img-obs-106-A

 میکروسکوپ آزمایشگاهی| فروش میکروسکوپ آزمایشگاهی OBS 106

میکروسکوپ ها شامل : انواع میکروسکوپ بیولوژی ، میکروسکوپ دانش آموزی ، میکروسکوپ متالوژی ، میکروسکوپ پلاریزان ،  میکروسکوپ اینورت ، استریو میکروسکوپ ، میکروسکوپ یک چشمی ، میکروسکوپ دو چشمی ، میکروسکوپ سه چشمی ، میکروسکوپ استاد و دانشجو پنج و سه نفره ، میکروسکوپ اندازه گیری با نرم افزار سه بعدی میکروسکوپ چینی و نور عبوری انعکاسی از کمپانی های معروف نیکون ژاپن و الیمپوس ژاپن ، نماینده کرن ، نماینده رسمی KERN  در ایران ، میکروسکوب های کمپانی Kern  ، میکرسوکوب OBS 106
با توجه به گسترش روز افزون میکروسکوپها در شاخه‌های مختلف علوم پزشکی و صنعت هر روزه شاهد پیشرفتهای مختلف در صنعت میکروسکوپها می‌باشیم. این پیشرفتها شامل پیشرفت سیستم روزی طراحی اجزای مکانیکی ، پایداری استحکام و راحتی در استفاده از آنها می‌باشد. میکروسکوپهای نوری معمولی که در تحقیقات بیولوژیکی و پزشکی بکار می‌روند دو دسته می‌باشند. یک دسته دارای چشمه نوری مجزا از میکروسکوپ می‌باشند و دسته دوم میکروسکوپهایی می‌باشند که دارای چشمه نوری تعبیه شده در میکروسکوپ می‌باشند. میکروسکوپهای معمولی مدرن مورد استفاده از نوع دوم می‌باشد و تقریبا ساخت و استفاده نوع اول منسوخ شده است.

اجزای اصلی میکروسکوپ نوری

پایه

یک قطعه شامل یک بخش پایین به صورتهای مختلف و گاهی بصورت نعل اسبی می‌باشد که بر روی میز محل مطالعه قرار می‌گیرد. پایه دارای ستون می‌باشد که اجزا مختلف به آن متصل می‌شود، وزن پایه نسبتا زیاد است و اجزائی که بر روی پایه سوارند عبارتند از: چشمه نور و حرکت دهنده لوله میکروسکوپ.

لوله

میکروسکوپهای مختلف تک چشمی (monocular) و یا دو چشمی (binocular) می‌باشند، وقتی به مدت طولانی می‌خواهیم از میکروسکوپ استفاده کنیم دو چشمی بهتر است، چون مانع خستگی چشم می‌باشد. لوله شامل دو گروه عدسی به نامهای چشمی و شیئی است.

عدسیهای شیئی

در میکروسکوپهای معمولی چهار عدسی شیئی بر روی صفحه چرخان نصب شده که ویژگیهای این عدسیها بصورت زیرا است:

عدسی شیئی آکروماتیک X10 (۱۶ میلیمتری با N.A = 0.3)
عدسی شیئی آکروماتیک X40 (۴ میلیمتری با N.A = 0.65)
عدسی فلورئیت X45 (۳۵ میلیمتری)
عدسی آکروماتیک X90 (۲ میلیمتری و N.A = 1.2)

دو عدسی اول در حالت خشک و دو عدسی بعدی در حالت ایمرسیون روغنی مورد استفاده قرار می‌گیرند. وظیفه عدسی شئی تهیه تصویر بزرگ شده از شیئی مورد نظر است عدسیهای شیئی وقتی به صورت خشک بکار می‌روند، دارای N.A زیاد نمی‌باشند و لذا مدت تفکیک آنها است. استفاده از روش ایمرسیون روغنی می‌تواند موجب افزایش N.A و افزایش روزلوشن شود. عدسیهای شیئی معمولا بصورت عدسیهای مرکب می‌باشند. کیفیت در عدسیهای شیئی وابسته به شدت روشنایی تصویر می‌توان تفکیک می‌باشد.

عدسیهای چشمی

وظایفی که چشمی بر عهده دارند عبارتند از: بزرگ سازی تصویر معکوس حاصله از عدسی شیئی ، تشکیل تصویر مجازی از تصویر حاصله بوسیله عدسی شیئی ، اندازه گیری و سنجش اجزا واقع در تصویر. چشمیها دارای انواع مختلفی می‌باشند که دو نوع معروف و معمول آنها عبارتند از چشمی هویگنس (Huygenian) و چشمی رامزدن (Ramsden). چشمی هویگنس متشکل از دو عدسی سطح محدب می‌باشد که یک طرف هر کدام مسطح و یکطرف محدب می‌باشد.

در نوع هویگنس سطح محدب هر دو عدسی بطرف پایین می‌باشد و بین این دو عدسی دیافراگم قرار گرفته ، دیافراگم در محل کانون عدسی بالای عدسی چشمی واقع است. عدسی پایین پرتوهای رسیده از عدسی شی را جمع آوری نموده و در محل دیافراگم یا در نزدیکی آن متمرکز می‌نماید. عدسی چشمی این تصویر را بزرگ نموده و البته بصورت یک تصویر مجازی بزرگ شده به چشم فرد مشاهده‌گر منتقل می‌کند.

کار دیافراگم کاهش خیره کننده‌گی نور رسیده به چشم بیننده است.چشمیهای هویگنس به چشمیهای منفی معروفند و دارای بزرگنمایی ۱۰ و ۵ می‌باشند. چشمی هویگنس دارای قیمت نسبتا ارزان و کارایی مناسب می‌باشد، اشکال عمده آن محدود بودن میدان دید و عدم تامین راحتی کافی برای چشم است. چشمیهای رامزدن به چشمیهای مثبت معروفند، این چشمیها با دقت خوبی انحرافات عدسیهای آپکروماتیک را تصحیح می‌نمایند.

سیستم روشنایی

میکروسکوپها دارای محدودیتهای متعددی می‌باشند و لیکن در عمل اغلب روشنایی میکروسکوپ موجب محدودیت اصلی می‌شود. بنابراین تلاشهای زیادی در تهیه روشنایی و روش تهیه روشنایی مناسب برای میکروسکوپها گردیده است. پس تهیه نور مناسب می‌تواند نقش اساسی در وضوح تصویر داشته باشد. روشنی محیط نمی‌تواند برای تهیه تصویر مناسب و کافی باشد، لذا در تهیه روشنایی حتما باید از لامپها و چشمه‌های مصنوعی نوری استفاده می‌شود. لامپهای مورد استفاده در میکروسکوپها عبارتند از:

  • لامپ هالوژن: این لامپ نور سفید ایجاد می‌کند و متشکل از یک رشته تنگستن در گاز هالوژن می‌باشد. حاصلضرب شدت نور حاصله در طول عمر این لامپ تقریبا ثابت است. از لحاظ قیمت در مقایسه با لامپ جیوه و گزنون ارزانتر می‌باشد و برای کارهای فتومیکروگرافی مفید است.
  • لامپ تنگستن: این لامپها در میکروسکوپهای ارزان قیمت و آموزشی بکار می‌روند.
  • لامپ گزنون: این نوع لامپ یک لامپ تخلیه الکتریکی است. این لامپها دارای پایداری بیشتری نسبت به لامپهای جیوه‌ای می‌باشند.
  • لامپ جیوه‌ای: این لامپ همانند لامپ گزنون از طریق تخلیه الکتریکی ایجاد نور می‌نماید. لامپ جیوه‌ای حاوی مقدار کمی جیوه است که در اثر یونیزه شدن هوای داخل لامپ ، یونهای تولید شده موجب تبخیر و یونیزه شدن جیوه‌ها می‌شوند.

کندانسور

وظیفه کندانسور متمرکز سازی نور بر روی نمونه می‌باشد. کندانسور در زیر Stage که محل قرار‌‌‌گیری نمونه است واقع می‌شود.

  • کندانسور آبه: این نوع کندانسور عموما در میکروسکوپهای معمولی بکار می‌روند. در این نوع کندانسورها دو عدسی بکار رفته است و دارای قیمت ارزان می‌باشند. این کندانسورها با عدسیهای شیئی و آکرومات CF با بزرگنمایی ۴x تا ۱۰۰x برای مشاهدات عمومی و کاربردهای تشخص مفید می‌باشند.
  • کندانسور با عدسی متحرک: این کندانسور برای فتومیکروگرافی همراه با عدسی‌های شیئی و پلن آکرومات از نوع CF مفید می‌باشند.
  • کندانسور آکرومات: این گروه کندانسور در مشاهدات و فتومیکروگرافی مورد استفاده قرار می‌گیرد این نوع کندانسور با عدسیهای شیئی ۴x تا ۱۰۰x می‌تواند بکار رود.
  • کندانسور آکرومات – آپلانت: این نوع کندانسور را پایه همراه با عدسی های شیئی آپوکرومات بکار برد این کندانسور ها برای فتومیکروگرافی جهت تصویرگیری از اجزا بسیار ریز بسیار مفید می باشد.
  • کندانسور جهت عدسیهای شیئی با توان کم ، که این نوع کندانسور معمولا در بزرگنماییهای بسیار پایین مثل عدسی شیئی با بزرگنمایی ۴x تا ۴۶۰x مفید هستند.

چگونگی تشکیل و مشاهده تصویر

نور به صورت موج سینوسی پیوسته انتشار نمی‌یابد و لیکن می‌توان تصور کرد که یک فوتون همچون یک بار ولی با سرعت ۳۰۰۰۰۰ کیلومتر در ثانیه حرکت می‌کند. و چون این ذرات بطور پی‌در‌پی در حال تعقیب یکدیگرند، لذا در عمل راهی جز نمایش آنها به صورت یک موج پیوسته نیست. فوتونهای نوری می‌توانند دارای طول موجهای متفاوتی باشند، رنگ نور بوسیله طول موج آن تعیین می‌شود. مخلوط نورهای مختلف موجب تحریک شبکیه چشم می‌شود که انسان احساس رنگ سفید می‌نماید.

اکثرا اشیایی که توسط میکروسکوپ مشاهده می‌شوند نسبت به نور شفاف می‌باشند و اجزای آنها تنها وقتی قابل مشاهده می‌باشند که این اجزا نسبت به زمینه دارای کنتراست (کنتراست در شدت و یا رنگ) باشند. وقتی که نور سفید به یک جسم قرمز بتابد، تمامی طول موجهای موجود در نور سفید بجز نور قرمز در آن جذب می‌شود. بنابراین یک جسم با ناحیه قرمز را در یک زمینه سفید بخاطر آنکه دارای کنتراست رنگی می‌باشد می‌توان دید.

عدسی شیئی در میکروسکوپ که یک عدسی همگرا با فاصله کانونی کوچک است، تصویر حقیقی و وارونه و بزرگتر از شیئ را تشکیل می‌دهد. برای این منظور شیئ باید بین کانون عدسی شیئی و قرار گیرد، توان عدسی شیئی بزرگتر از توان عدسی چشمی است و تصویر اول را بزرگتر می‌کند (عدسی چشمی مثل ذره بین عمل می‌کند) و تصویر حاصل از عدسی شیئی باید در فاصله کانونی عدسی چشمی باشد. از این شیئ ، تصویر مجازی نهایی تشکیل می‌شود که بزرگتر است.

http://www.olympus-lifescience.com/en/

http://aratajhiz.com/%da%a9%d9%85%d9%be%d8%a7%d9%86%db%8c-olympus-%da%98%d8%a7%d9%be%d9%86/

http://iranlabexpo.ir/index.php?ctrl=companies&actn=view&id=1336&lang=1

فروش میکروسکوپ آزمایشگاهی OBS 106 | خرید میکروسکوپ آزمایشگاهی OBS 106 | نمایندگی KERN
img-obs-106-A

 میکروسکوپ آزمایشگاهی| فروش میکروسکوپ آزمایشگاهی OBS 104

میکروسکوپ ها شامل : انواع میکروسکوپ بیولوژی ، میکروسکوپ دانش آموزی ، میکروسکوپ متالوژی ، میکروسکوپ پلاریزان ،  میکروسکوپ اینورت ، استریو میکروسکوپ ، میکروسکوپ یک چشمی ، میکروسکوپ دو چشمی ، میکروسکوپ سه چشمی ، میکروسکوپ استاد و دانشجو پنج و سه نفره ، میکروسکوپ اندازه گیری با نرم افزار سه بعدی میکروسکوپ چینی و نور عبوری انعکاسی از کمپانی های معروف نیکون ژاپن و الیمپوس ژاپن ، نماینده کرن ، نماینده رسمی KERN  در ایران ، میکروسکوب های کمپانی Kern  ، میکرسوکوب OBS 104
با توجه به گسترش روز افزون میکروسکوپها در شاخه‌های مختلف علوم پزشکی و صنعت هر روزه شاهد پیشرفتهای مختلف در صنعت میکروسکوپها می‌باشیم. این پیشرفتها شامل پیشرفت سیستم روزی طراحی اجزای مکانیکی ، پایداری استحکام و راحتی در استفاده از آنها می‌باشد. میکروسکوپهای نوری معمولی که در تحقیقات بیولوژیکی و پزشکی بکار می‌روند دو دسته می‌باشند. یک دسته دارای چشمه نوری مجزا از میکروسکوپ می‌باشند و دسته دوم میکروسکوپهایی می‌باشند که دارای چشمه نوری تعبیه شده در میکروسکوپ می‌باشند. میکروسکوپهای معمولی مدرن مورد استفاده از نوع دوم می‌باشد و تقریبا ساخت و استفاده نوع اول منسوخ شده است.

اجزای اصلی میکروسکوپ نوری

پایه

یک قطعه شامل یک بخش پایین به صورتهای مختلف و گاهی بصورت نعل اسبی می‌باشد که بر روی میز محل مطالعه قرار می‌گیرد. پایه دارای ستون می‌باشد که اجزا مختلف به آن متصل می‌شود، وزن پایه نسبتا زیاد است و اجزائی که بر روی پایه سوارند عبارتند از: چشمه نور و حرکت دهنده لوله میکروسکوپ.

لوله

میکروسکوپهای مختلف تک چشمی (monocular) و یا دو چشمی (binocular) می‌باشند، وقتی به مدت طولانی می‌خواهیم از میکروسکوپ استفاده کنیم دو چشمی بهتر است، چون مانع خستگی چشم می‌باشد. لوله شامل دو گروه عدسی به نامهای چشمی و شیئی است.

عدسیهای شیئی

در میکروسکوپهای معمولی چهار عدسی شیئی بر روی صفحه چرخان نصب شده که ویژگیهای این عدسیها بصورت زیرا است:

عدسی شیئی آکروماتیک X10 (۱۶ میلیمتری با N.A = 0.3)
عدسی شیئی آکروماتیک X40 (۴ میلیمتری با N.A = 0.65)
عدسی فلورئیت X45 (۳۵ میلیمتری)
عدسی آکروماتیک X90 (۲ میلیمتری و N.A = 1.2)

دو عدسی اول در حالت خشک و دو عدسی بعدی در حالت ایمرسیون روغنی مورد استفاده قرار می‌گیرند. وظیفه عدسی شئی تهیه تصویر بزرگ شده از شیئی مورد نظر است عدسیهای شیئی وقتی به صورت خشک بکار می‌روند، دارای N.A زیاد نمی‌باشند و لذا مدت تفکیک آنها است. استفاده از روش ایمرسیون روغنی می‌تواند موجب افزایش N.A و افزایش روزلوشن شود. عدسیهای شیئی معمولا بصورت عدسیهای مرکب می‌باشند. کیفیت در عدسیهای شیئی وابسته به شدت روشنایی تصویر می‌توان تفکیک می‌باشد.

عدسیهای چشمی

وظایفی که چشمی بر عهده دارند عبارتند از: بزرگ سازی تصویر معکوس حاصله از عدسی شیئی ، تشکیل تصویر مجازی از تصویر حاصله بوسیله عدسی شیئی ، اندازه گیری و سنجش اجزا واقع در تصویر. چشمیها دارای انواع مختلفی می‌باشند که دو نوع معروف و معمول آنها عبارتند از چشمی هویگنس (Huygenian) و چشمی رامزدن (Ramsden). چشمی هویگنس متشکل از دو عدسی سطح محدب می‌باشد که یک طرف هر کدام مسطح و یکطرف محدب می‌باشد.

در نوع هویگنس سطح محدب هر دو عدسی بطرف پایین می‌باشد و بین این دو عدسی دیافراگم قرار گرفته ، دیافراگم در محل کانون عدسی بالای عدسی چشمی واقع است. عدسی پایین پرتوهای رسیده از عدسی شی را جمع آوری نموده و در محل دیافراگم یا در نزدیکی آن متمرکز می‌نماید. عدسی چشمی این تصویر را بزرگ نموده و البته بصورت یک تصویر مجازی بزرگ شده به چشم فرد مشاهده‌گر منتقل می‌کند.

کار دیافراگم کاهش خیره کننده‌گی نور رسیده به چشم بیننده است.چشمیهای هویگنس به چشمیهای منفی معروفند و دارای بزرگنمایی ۱۰ و ۵ می‌باشند. چشمی هویگنس دارای قیمت نسبتا ارزان و کارایی مناسب می‌باشد، اشکال عمده آن محدود بودن میدان دید و عدم تامین راحتی کافی برای چشم است. چشمیهای رامزدن به چشمیهای مثبت معروفند، این چشمیها با دقت خوبی انحرافات عدسیهای آپکروماتیک را تصحیح می‌نمایند.

سیستم روشنایی

میکروسکوپها دارای محدودیتهای متعددی می‌باشند و لیکن در عمل اغلب روشنایی میکروسکوپ موجب محدودیت اصلی می‌شود. بنابراین تلاشهای زیادی در تهیه روشنایی و روش تهیه روشنایی مناسب برای میکروسکوپها گردیده است. پس تهیه نور مناسب می‌تواند نقش اساسی در وضوح تصویر داشته باشد. روشنی محیط نمی‌تواند برای تهیه تصویر مناسب و کافی باشد، لذا در تهیه روشنایی حتما باید از لامپها و چشمه‌های مصنوعی نوری استفاده می‌شود. لامپهای مورد استفاده در میکروسکوپها عبارتند از:

  • لامپ هالوژن: این لامپ نور سفید ایجاد می‌کند و متشکل از یک رشته تنگستن در گاز هالوژن می‌باشد. حاصلضرب شدت نور حاصله در طول عمر این لامپ تقریبا ثابت است. از لحاظ قیمت در مقایسه با لامپ جیوه و گزنون ارزانتر می‌باشد و برای کارهای فتومیکروگرافی مفید است.
  • لامپ تنگستن: این لامپها در میکروسکوپهای ارزان قیمت و آموزشی بکار می‌روند.
  • لامپ گزنون: این نوع لامپ یک لامپ تخلیه الکتریکی است. این لامپها دارای پایداری بیشتری نسبت به لامپهای جیوه‌ای می‌باشند.
  • لامپ جیوه‌ای: این لامپ همانند لامپ گزنون از طریق تخلیه الکتریکی ایجاد نور می‌نماید. لامپ جیوه‌ای حاوی مقدار کمی جیوه است که در اثر یونیزه شدن هوای داخل لامپ ، یونهای تولید شده موجب تبخیر و یونیزه شدن جیوه‌ها می‌شوند.

کندانسور

وظیفه کندانسور متمرکز سازی نور بر روی نمونه می‌باشد. کندانسور در زیر Stage که محل قرار‌‌‌گیری نمونه است واقع می‌شود.

  • کندانسور آبه: این نوع کندانسور عموما در میکروسکوپهای معمولی بکار می‌روند. در این نوع کندانسورها دو عدسی بکار رفته است و دارای قیمت ارزان می‌باشند. این کندانسورها با عدسیهای شیئی و آکرومات CF با بزرگنمایی ۴x تا ۱۰۰x برای مشاهدات عمومی و کاربردهای تشخص مفید می‌باشند.
  • کندانسور با عدسی متحرک: این کندانسور برای فتومیکروگرافی همراه با عدسی‌های شیئی و پلن آکرومات از نوع CF مفید می‌باشند.
  • کندانسور آکرومات: این گروه کندانسور در مشاهدات و فتومیکروگرافی مورد استفاده قرار می‌گیرد این نوع کندانسور با عدسیهای شیئی ۴x تا ۱۰۰x می‌تواند بکار رود.
  • کندانسور آکرومات – آپلانت: این نوع کندانسور را پایه همراه با عدسی های شیئی آپوکرومات بکار برد این کندانسور ها برای فتومیکروگرافی جهت تصویرگیری از اجزا بسیار ریز بسیار مفید می باشد.
  • کندانسور جهت عدسیهای شیئی با توان کم ، که این نوع کندانسور معمولا در بزرگنماییهای بسیار پایین مثل عدسی شیئی با بزرگنمایی ۴x تا ۴۶۰x مفید هستند.

چگونگی تشکیل و مشاهده تصویر

نور به صورت موج سینوسی پیوسته انتشار نمی‌یابد و لیکن می‌توان تصور کرد که یک فوتون همچون یک بار ولی با سرعت ۳۰۰۰۰۰ کیلومتر در ثانیه حرکت می‌کند. و چون این ذرات بطور پی‌در‌پی در حال تعقیب یکدیگرند، لذا در عمل راهی جز نمایش آنها به صورت یک موج پیوسته نیست. فوتونهای نوری می‌توانند دارای طول موجهای متفاوتی باشند، رنگ نور بوسیله طول موج آن تعیین می‌شود. مخلوط نورهای مختلف موجب تحریک شبکیه چشم می‌شود که انسان احساس رنگ سفید می‌نماید.

اکثرا اشیایی که توسط میکروسکوپ مشاهده می‌شوند نسبت به نور شفاف می‌باشند و اجزای آنها تنها وقتی قابل مشاهده می‌باشند که این اجزا نسبت به زمینه دارای کنتراست (کنتراست در شدت و یا رنگ) باشند. وقتی که نور سفید به یک جسم قرمز بتابد، تمامی طول موجهای موجود در نور سفید بجز نور قرمز در آن جذب می‌شود. بنابراین یک جسم با ناحیه قرمز را در یک زمینه سفید بخاطر آنکه دارای کنتراست رنگی می‌باشد می‌توان دید.

عدسی شیئی در میکروسکوپ که یک عدسی همگرا با فاصله کانونی کوچک است، تصویر حقیقی و وارونه و بزرگتر از شیئ را تشکیل می‌دهد. برای این منظور شیئ باید بین کانون عدسی شیئی و قرار گیرد، توان عدسی شیئی بزرگتر از توان عدسی چشمی است و تصویر اول را بزرگتر می‌کند (عدسی چشمی مثل ذره بین عمل می‌کند) و تصویر حاصل از عدسی شیئی باید در فاصله کانونی عدسی چشمی باشد. از این شیئ ، تصویر مجازی نهایی تشکیل می‌شود که بزرگتر است.

http://www.olympus-lifescience.com/en/

http://aratajhiz.com/%da%a9%d9%85%d9%be%d8%a7%d9%86%db%8c-olympus-%da%98%d8%a7%d9%be%d9%86/

http://iranlabexpo.ir/index.php?ctrl=companies&actn=view&id=1336&lang=1

فروش میکروسکوپ آزمایشگاهی OBS 104 | خرید میکروسکوپ آزمایشگاهی OBS 104 | نماینده KERN آلمان
img-obs-101-A

خرید میکروسکوپ| فروش میکروسکوپ آزمایشگاهی OBS 101

میکروسکوپ ها شامل : انواع میکروسکوپ بیولوژی ، میکروسکوپ دانش آموزی ، میکروسکوپ متالوژی ، میکروسکوپ پلاریزان ،  میکروسکوپ اینورت ، استریو میکروسکوپ ، میکروسکوپ یک چشمی ، میکروسکوپ دو چشمی ، میکروسکوپ سه چشمی ، میکروسکوپ استاد و دانشجو پنج و سه نفره ، میکروسکوپ اندازه گیری با نرم افزار سه بعدی میکروسکوپ چینی و نور عبوری انعکاسی از کمپانی های معروف نیکون ژاپن و الیمپوس ژاپن ، نماینده کرن ، نماینده رسمی KERN  در ایران ، میکروسکوب های کمپانی Kern  ، میکرسوکوب OBS 101
با توجه به گسترش روز افزون میکروسکوپها در شاخه‌های مختلف علوم پزشکی و صنعت هر روزه شاهد پیشرفتهای مختلف در صنعت میکروسکوپها می‌باشیم. این پیشرفتها شامل پیشرفت سیستم روزی طراحی اجزای مکانیکی ، پایداری استحکام و راحتی در استفاده از آنها می‌باشد. میکروسکوپهای نوری معمولی که در تحقیقات بیولوژیکی و پزشکی بکار می‌روند دو دسته می‌باشند. یک دسته دارای چشمه نوری مجزا از میکروسکوپ می‌باشند و دسته دوم میکروسکوپهایی می‌باشند که دارای چشمه نوری تعبیه شده در میکروسکوپ می‌باشند. میکروسکوپهای معمولی مدرن مورد استفاده از نوع دوم می‌باشد و تقریبا ساخت و استفاده نوع اول منسوخ شده است.

 

اجزای اصلی میکروسکوپ نوری

پایه

یک قطعه شامل یک بخش پایین به صورتهای مختلف و گاهی بصورت نعل اسبی می‌باشد که بر روی میز محل مطالعه قرار می‌گیرد. پایه دارای ستون می‌باشد که اجزا مختلف به آن متصل می‌شود، وزن پایه نسبتا زیاد است و اجزائی که بر روی پایه سوارند عبارتند از: چشمه نور و حرکت دهنده لوله میکروسکوپ.

لوله

میکروسکوپهای مختلف تک چشمی (monocular) و یا دو چشمی (binocular) می‌باشند، وقتی به مدت طولانی می‌خواهیم از میکروسکوپ استفاده کنیم دو چشمی بهتر است، چون مانع خستگی چشم می‌باشد. لوله شامل دو گروه عدسی به نامهای چشمی و شیئی است.

عدسیهای شیئی

در میکروسکوپهای معمولی چهار عدسی شیئی بر روی صفحه چرخان نصب شده که ویژگیهای این عدسیها بصورت زیرا است:

عدسی شیئی آکروماتیک X10 (۱۶ میلیمتری با N.A = 0.3)
عدسی شیئی آکروماتیک X40 (۴ میلیمتری با N.A = 0.65)
عدسی فلورئیت X45 (۳۵ میلیمتری)
عدسی آکروماتیک X90 (۲ میلیمتری و N.A = 1.2)

دو عدسی اول در حالت خشک و دو عدسی بعدی در حالت ایمرسیون روغنی مورد استفاده قرار می‌گیرند. وظیفه عدسی شئی تهیه تصویر بزرگ شده از شیئی مورد نظر است عدسیهای شیئی وقتی به صورت خشک بکار می‌روند، دارای N.A زیاد نمی‌باشند و لذا مدت تفکیک آنها است. استفاده از روش ایمرسیون روغنی می‌تواند موجب افزایش N.A و افزایش روزلوشن شود. عدسیهای شیئی معمولا بصورت عدسیهای مرکب می‌باشند. کیفیت در عدسیهای شیئی وابسته به شدت روشنایی تصویر می‌توان تفکیک می‌باشد.

عدسیهای چشمی

وظایفی که چشمی بر عهده دارند عبارتند از: بزرگ سازی تصویر معکوس حاصله از عدسی شیئی ، تشکیل تصویر مجازی از تصویر حاصله بوسیله عدسی شیئی ، اندازه گیری و سنجش اجزا واقع در تصویر. چشمیها دارای انواع مختلفی می‌باشند که دو نوع معروف و معمول آنها عبارتند از چشمی هویگنس (Huygenian) و چشمی رامزدن (Ramsden). چشمی هویگنس متشکل از دو عدسی سطح محدب می‌باشد که یک طرف هر کدام مسطح و یکطرف محدب می‌باشد.

در نوع هویگنس سطح محدب هر دو عدسی بطرف پایین می‌باشد و بین این دو عدسی دیافراگم قرار گرفته ، دیافراگم در محل کانون عدسی بالای عدسی چشمی واقع است. عدسی پایین پرتوهای رسیده از عدسی شی را جمع آوری نموده و در محل دیافراگم یا در نزدیکی آن متمرکز می‌نماید. عدسی چشمی این تصویر را بزرگ نموده و البته بصورت یک تصویر مجازی بزرگ شده به چشم فرد مشاهده‌گر منتقل می‌کند.

کار دیافراگم کاهش خیره کننده‌گی نور رسیده به چشم بیننده است.چشمیهای هویگنس به چشمیهای منفی معروفند و دارای بزرگنمایی ۱۰ و ۵ می‌باشند. چشمی هویگنس دارای قیمت نسبتا ارزان و کارایی مناسب می‌باشد، اشکال عمده آن محدود بودن میدان دید و عدم تامین راحتی کافی برای چشم است. چشمیهای رامزدن به چشمیهای مثبت معروفند، این چشمیها با دقت خوبی انحرافات عدسیهای آپکروماتیک را تصحیح می‌نمایند.

سیستم روشنایی

میکروسکوپها دارای محدودیتهای متعددی می‌باشند و لیکن در عمل اغلب روشنایی میکروسکوپ موجب محدودیت اصلی می‌شود. بنابراین تلاشهای زیادی در تهیه روشنایی و روش تهیه روشنایی مناسب برای میکروسکوپها گردیده است. پس تهیه نور مناسب می‌تواند نقش اساسی در وضوح تصویر داشته باشد. روشنی محیط نمی‌تواند برای تهیه تصویر مناسب و کافی باشد، لذا در تهیه روشنایی حتما باید از لامپها و چشمه‌های مصنوعی نوری استفاده می‌شود. لامپهای مورد استفاده در میکروسکوپها عبارتند از:

  • لامپ هالوژن: این لامپ نور سفید ایجاد می‌کند و متشکل از یک رشته تنگستن در گاز هالوژن می‌باشد. حاصلضرب شدت نور حاصله در طول عمر این لامپ تقریبا ثابت است. از لحاظ قیمت در مقایسه با لامپ جیوه و گزنون ارزانتر می‌باشد و برای کارهای فتومیکروگرافی مفید است.
  • لامپ تنگستن: این لامپها در میکروسکوپهای ارزان قیمت و آموزشی بکار می‌روند.
  • لامپ گزنون: این نوع لامپ یک لامپ تخلیه الکتریکی است. این لامپها دارای پایداری بیشتری نسبت به لامپهای جیوه‌ای می‌باشند.
  • لامپ جیوه‌ای: این لامپ همانند لامپ گزنون از طریق تخلیه الکتریکی ایجاد نور می‌نماید. لامپ جیوه‌ای حاوی مقدار کمی جیوه است که در اثر یونیزه شدن هوای داخل لامپ ، یونهای تولید شده موجب تبخیر و یونیزه شدن جیوه‌ها می‌شوند.

کندانسور

وظیفه کندانسور متمرکز سازی نور بر روی نمونه می‌باشد. کندانسور در زیر Stage که محل قرار‌‌‌گیری نمونه است واقع می‌شود.

  • کندانسور آبه: این نوع کندانسور عموما در میکروسکوپهای معمولی بکار می‌روند. در این نوع کندانسورها دو عدسی بکار رفته است و دارای قیمت ارزان می‌باشند. این کندانسورها با عدسیهای شیئی و آکرومات CF با بزرگنمایی ۴x تا ۱۰۰x برای مشاهدات عمومی و کاربردهای تشخص مفید می‌باشند.
  • کندانسور با عدسی متحرک: این کندانسور برای فتومیکروگرافی همراه با عدسی‌های شیئی و پلن آکرومات از نوع CF مفید می‌باشند.
  • کندانسور آکرومات: این گروه کندانسور در مشاهدات و فتومیکروگرافی مورد استفاده قرار می‌گیرد این نوع کندانسور با عدسیهای شیئی ۴x تا ۱۰۰x می‌تواند بکار رود.
  • کندانسور آکرومات – آپلانت: این نوع کندانسور را پایه همراه با عدسی های شیئی آپوکرومات بکار برد این کندانسور ها برای فتومیکروگرافی جهت تصویرگیری از اجزا بسیار ریز بسیار مفید می باشد.
  • کندانسور جهت عدسیهای شیئی با توان کم ، که این نوع کندانسور معمولا در بزرگنماییهای بسیار پایین مثل عدسی شیئی با بزرگنمایی ۴x تا ۴۶۰x مفید هستند.

چگونگی تشکیل و مشاهده تصویر

نور به صورت موج سینوسی پیوسته انتشار نمی‌یابد و لیکن می‌توان تصور کرد که یک فوتون همچون یک بار ولی با سرعت ۳۰۰۰۰۰ کیلومتر در ثانیه حرکت می‌کند. و چون این ذرات بطور پی‌در‌پی در حال تعقیب یکدیگرند، لذا در عمل راهی جز نمایش آنها به صورت یک موج پیوسته نیست. فوتونهای نوری می‌توانند دارای طول موجهای متفاوتی باشند، رنگ نور بوسیله طول موج آن تعیین می‌شود. مخلوط نورهای مختلف موجب تحریک شبکیه چشم می‌شود که انسان احساس رنگ سفید می‌نماید.

اکثرا اشیایی که توسط میکروسکوپ مشاهده می‌شوند نسبت به نور شفاف می‌باشند و اجزای آنها تنها وقتی قابل مشاهده می‌باشند که این اجزا نسبت به زمینه دارای کنتراست (کنتراست در شدت و یا رنگ) باشند. وقتی که نور سفید به یک جسم قرمز بتابد، تمامی طول موجهای موجود در نور سفید بجز نور قرمز در آن جذب می‌شود. بنابراین یک جسم با ناحیه قرمز را در یک زمینه سفید بخاطر آنکه دارای کنتراست رنگی می‌باشد می‌توان دید.

عدسی شیئی در میکروسکوپ که یک عدسی همگرا با فاصله کانونی کوچک است، تصویر حقیقی و وارونه و بزرگتر از شیئ را تشکیل می‌دهد. برای این منظور شیئ باید بین کانون عدسی شیئی و قرار گیرد، توان عدسی شیئی بزرگتر از توان عدسی چشمی است و تصویر اول را بزرگتر می‌کند (عدسی چشمی مثل ذره بین عمل می‌کند) و تصویر حاصل از عدسی شیئی باید در فاصله کانونی عدسی چشمی باشد. از این شیئ ، تصویر مجازی نهایی تشکیل می‌شود که بزرگتر است.

 

 

http://www.olympus-lifescience.com/en/

http://aratajhiz.com/%da%a9%d9%85%d9%be%d8%a7%d9%86%db%8c-olympus-%da%98%d8%a7%d9%be%d9%86/

http://iranlabexpo.ir/index.php?ctrl=companies&actn=view&id=1336&lang=1

فروش میکروسکوپ آزمایشگاهی OBS 101 | خرید میکروسکوپ آزمایشگاهی OBS 101 | نمایندگی KERN
740

توربیدیمتر | خرید توربیدیمتر | فروش توربیدومتر Turb355T

خرید کدوزت سنج / فروش کدورت سنج/ کدورت سنج چیست / همه چیز درباه کدورت سنج / کدورت سنج اب / خرید توربیدومتر  / فروش توربیدومتر / قیمت توربیدومتر / نماینده توربیدومتر / توربیدومتر  چیست / کدورت سنج / خرید کدورت سنج / فروش کدورت سنج / درباره کدورت سنج  / قیمت کدورت سنج / نماینده WTW / نمایندگی انحصاری wtw / فروش Turb355 / خرید Turb355 / قیمت Turb 355/ Turb 355WTW

اطلاعات کلی کدورت سنج

ذرات جامد معلق مانع انتقال نور از میان مایعات می شوند. کدورت یک نمونه ممکن است به علت تنها یک ماده ی شیمیایی یا ترکیبی از چندین ماده ی شیمیایی باشد. یک کدورت سنج این ممانعت را برای تعیین کدورت، یا شدت نور در یک نمونه، اندازه گیری می کند. در واحد های کدورتی nephelometric ( NTU ) یک محلول تیره دارای مقدار کدورت بالایی، و در مقابل محلول نسبتا کدر دارای مقدار پایینی از کدورت است. به یاد داشته باشید با آنکه کدورت سنج ها اثر ذرات را در شفافیت یک مایع اندازه می گیرند، آن ها نمی توانند برای تعیین اندازه ی اجزاء بکار گرفته شوند. کدورت سنجی که در تصویر بالا نشان داده شده است می تواند در هر گونه لوله ای با هر اندازه ای با سنسور نوع درجی، بکار گرفته شود ولی همچنین می تواند در موارد کاربردی کانال باز با یک سنسور شناور نیز استفاده شود.
طراحی تجهیزات
همانطور که در انیمیشن هم دیده می شود، یک کدورت سنج از یک منبع نوری، عدسی های متمرکز کننده برای مستقیم سازی پرتوی نور از میان نمونه، تشکیل شده است.
یک آشکار ساز فوتو الکتریک که در زاویه ی ۹۰ درجه ای به نسبت پرتوی نور قرار داده شده است تا مقدار نور پراکنده شده را اندازه گیری کند و همچنین یک تله نوری نیز به چشم می خورد تا جلوی آشکار سازی هرگونه نوری که قبلا از نمونه عبور کرده است بگیرد تا خطایی در نتایج به دست نیاید.
کدورت سنج ها پرتو های نور ( خطوط زرد ) را به درون نمونه ( آبی ) که حاوی ذرات ( نقطه های سیاه ) است، می فرستند. این ذرات انرژی این نور را جذب و در تمامی جهات می تابانند. شیوه ای که بواسطه ی آن این دو با هم در ارتباط هستند بستگی به اندازه، شکل و ترکیب ذرات، طول موج پرتوی نور و شاخص انکسار نمونه دارد. شاخص انکسار ذرات باید متفاوت با مایع معلق کننده باشند. همانطور که این تفاوت افزایش پیدا می کند، عمل پراکنده کردن نور شدید تر می شود. کدورت سنج های نسبتی و غیر نسبتی همانطور که در مدل شماتیک زیر نشان داده شده است، دارای طراحی مشابهی هستند. کدورت سنج غیر نسبتی تنها دارای یک آشکار ساز در زاویه ی ۹۰ درجه ای با پرتوی نور است در حالیکه کدورت سنج نسبتی دارای دو آشکار ساز اضافی در زوایای متناوب است.

The lab turbidity meters of the Turb® ۵۵۰ series with IR lamp as per DIN ISO or Tungsten-halogen lamp as per US EPA for nephelometric measurements with automatic 1-3 point calibration and calibration interval monitoring with protocol for the AQS. User guidance and quick instructions on the meter ensure user-friendly measurements and calibration. The calibration is conducted with highly precise AMCO Clear® polymer standards, called a secondary standard for drinking water as per DIN ISO 27027, EN ISO 7027 or approved as primary standards as per US EPA (0.02 – ۱۰٫۰ – ۱۰۰۰ NTU). The analytical quality assurance (AQA) takes place via an adjustable calibration interval and a calibration protocol.

AMCO Clear® Standards

Compared to Formazine, polymer calibration standards offer a much higher accuracy and stability without drifting, which increases the measuring accuracy even more:

  • Manufacturing tolerance of only ±۱% for highest result accuracy
  • Long-term stable particle distribution and size
  • No health hazard
  • Easy to dispose of
  • N.I.S.T. traceability

For continuous measurements, there is an attachment for flow-through available. The measurement data can be sent to a PC or a printer timer-controlled via the RS232 interface

برگرفته از سایت WTW.

http://www.lawlink.cn/Uploadimage/Turb%E6%B5%8A%E5%BA%A6%E8%AE%A1.jpg

خرید توربیدیمتر | فروش توربیدومتر | نماینده WTW ایران
csm_WTW-600210-Turb_555IR-lab_turbidity_meter_14f7ad2b1a

کدورت سنج| خرید کدورت سنج| فروش کدورت سنج Turb 555T

خرید کدوزت سنج / فروش کدورت سنج/ کدورت سنج چیست / همه چیز درباه کدورت سنج / کدورت سنج اب / خرید توربیدومتر  / فروش توربیدومتر / قیمت توربیدومتر / نماینده توربیدومتر / توربیدومتر  چیست / کدورت سنج / خرید کدورت سنج / فروش کدورت سنج / درباره کدورت سنج  / قیمت کدورت سنج / نماینده WTW / نمایندگی انحصاری wtw / فروش Turb 555 / خرید Turb555 / قیمت Turb 555/ Turb 4555WTW

اطلاعات کلی کدورت سنج

ذرات جامد معلق مانع انتقال نور از میان مایعات می شوند. کدورت یک نمونه ممکن است به علت تنها یک ماده ی شیمیایی یا ترکیبی از چندین ماده ی شیمیایی باشد. یک کدورت سنج این ممانعت را برای تعیین کدورت، یا شدت نور در یک نمونه، اندازه گیری می کند. در واحد های کدورتی nephelometric ( NTU ) یک محلول تیره دارای مقدار کدورت بالایی، و در مقابل محلول نسبتا کدر دارای مقدار پایینی از کدورت است. به یاد داشته باشید با آنکه کدورت سنج ها اثر ذرات را در شفافیت یک مایع اندازه می گیرند، آن ها نمی توانند برای تعیین اندازه ی اجزاء بکار گرفته شوند. کدورت سنجی که در تصویر بالا نشان داده شده است می تواند در هر گونه لوله ای با هر اندازه ای با سنسور نوع درجی، بکار گرفته شود ولی همچنین می تواند در موارد کاربردی کانال باز با یک سنسور شناور نیز استفاده شود.
طراحی تجهیزات
همانطور که در انیمیشن هم دیده می شود، یک کدورت سنج از یک منبع نوری، عدسی های متمرکز کننده برای مستقیم سازی پرتوی نور از میان نمونه، تشکیل شده است.
یک آشکار ساز فوتو الکتریک که در زاویه ی ۹۰ درجه ای به نسبت پرتوی نور قرار داده شده است تا مقدار نور پراکنده شده را اندازه گیری کند و همچنین یک تله نوری نیز به چشم می خورد تا جلوی آشکار سازی هرگونه نوری که قبلا از نمونه عبور کرده است بگیرد تا خطایی در نتایج به دست نیاید.
کدورت سنج ها پرتو های نور ( خطوط زرد ) را به درون نمونه ( آبی ) که حاوی ذرات ( نقطه های سیاه ) است، می فرستند. این ذرات انرژی این نور را جذب و در تمامی جهات می تابانند. شیوه ای که بواسطه ی آن این دو با هم در ارتباط هستند بستگی به اندازه، شکل و ترکیب ذرات، طول موج پرتوی نور و شاخص انکسار نمونه دارد. شاخص انکسار ذرات باید متفاوت با مایع معلق کننده باشند. همانطور که این تفاوت افزایش پیدا می کند، عمل پراکنده کردن نور شدید تر می شود. کدورت سنج های نسبتی و غیر نسبتی همانطور که در مدل شماتیک زیر نشان داده شده است، دارای طراحی مشابهی هستند. کدورت سنج غیر نسبتی تنها دارای یک آشکار ساز در زاویه ی ۹۰ درجه ای با پرتوی نور است در حالیکه کدورت سنج نسبتی دارای دو آشکار ساز اضافی در زوایای متناوب است.

The lab turbidity meters of the Turb® ۵۵۰ series with IR lamp as per DIN ISO or Tungsten-halogen lamp as per US EPA for nephelometric measurements with automatic 1-3 point calibration and calibration interval monitoring with protocol for the AQS. User guidance and quick instructions on the meter ensure user-friendly measurements and calibration. The calibration is conducted with highly precise AMCO Clear® polymer standards, called a secondary standard for drinking water as per DIN ISO 27027, EN ISO 7027 or approved as primary standards as per US EPA (0.02 – ۱۰٫۰ – ۱۰۰۰ NTU). The analytical quality assurance (AQA) takes place via an adjustable calibration interval and a calibration protocol.

AMCO Clear® Standards

Compared to Formazine, polymer calibration standards offer a much higher accuracy and stability without drifting, which increases the measuring accuracy even more:

  • Manufacturing tolerance of only ±۱% for highest result accuracy
  • Long-term stable particle distribution and size
  • No health hazard
  • Easy to dispose of
  • N.I.S.T. traceability

For continuous measurements, there is an attachment for flow-through available. The measurement data can be sent to a PC or a printer timer-controlled via the RS232 interface

برگرفته از سایت WTW.

http://www.lawlink.cn/Uploadimage/Turb%E6%B5%8A%E5%BA%A6%E8%AE%A1.jpg

 

خرید کدورت سنج | فروش کدورت سنج | نمایندگی WTW

 

5300 ICP

خرید و فروش ICP / قیمت ICP-OES 5300

فروش ICP / خرید ICP کارکرده / قیمت ICP-OES / نماینده perkin elmer /  خرید  ICP اجیلنت / فروش ICP اترمو / ICP-OES5300 / درباره طیف سنجی پلاسمای جفت شده القایی/ طیف سنجی پلاسمای جفت شده القایی چیست / دربارهICP / ICP چیست /

طیف سنجی پلاسمای جفت شده القایی (ICP) و ترکیب آن با طیف سنج جرمی (ICP-MS)

طیف سنجی پلاسمای جفت شده القایی ICP از جمله روشهای طیف سنجی اتمی است که در آن اتمی شدن عناصر (Atomization) به کمک محیط گرم پلاسما صورت می پذیرد. این روش در مقایسه با روشهای دیگر، روشی حساس تر، با حد تشخیص بهتر و تکرارپذیری بالاتر است. از تلفیق این روش با طیف سنج جرمی (MS) می توان برای افزایش قبلیت های این روش استفاده کرد. از جمله کاربرد های روش طیف سنجی جرمی توسط پلاسمای جفت شده القایی در نانوفناوری، تعیین اندازه نانو ذرات است. تکنیک ها و روش های مختلفی برای این منظور مورد استفاده قرار میگیرد از جمله روش تک ذره، روش کروماتوگرافی و روش های ژل الکتروفورز.
۱ مقدمه: طیف‌ سنجی پلاسمای جفت شده القایی (ICP)
پلاسمای جفت شده القایی (Inductively Coupled Plasma)، از جمله روشهای طیف سنجی نشری (Emission) است که اتم سازی در آن به کمک پلاسمای تولید شده توسط یک گاز بی اثر که عمدتاً آرگون (Ar) است صورت می¬پذیرد. از این روش برای آنالیز عنصری (Elemental Analysis) بیشتر عناصر بجز آرگون (گاز بی اثر) استفاده می شود. به مجموعه‌ای از الکترون‌ها و یون‌های مثبت گازی )بی اثر (که دارای انرژی و دمایی بالا هستند پلاسما گفته می شود، هرچند به دلیل بالا بودن غلظت این دو جزء (کاتیون و الکترون) در کل بار کلی پلاسما تقریبا صفر است.

۲-۱ تجهیزات دستگاهی
پلاسمای جفت شده القایی از یک مشعل با سه لوله متحد المرکز از جنس کوارتز تشکیل شده است. درون هر لوله گاز آرگون (با سرعت جریان های متفاوت) جهت خنک کردن و همچنین انتقال نمونه به درون پلاسما جریان دارد. نمایی از مشعل و سایر اجزاء ICP در شکل۱ آورده شده است. در بالای یکی از لوله های مشعل (بلندترین لوله) یک سیم پیچ القایی (Induction Coil) وجود دارد که نیروی آن توسط یک جنراتور امواج رادیویی (RF Frequency Generator ) تامین می شود.
جرقه تولید شده به کمک سیم پیچ تسلا (القایی) سبب یونیزه شدن گاز آرگون می شود. یون ها و الکترون های حاصل از یونیزاسیون با میدان مغناطیسی تولید شده توسط سیم پیچ القایی برهمکنش می دهند و در نهایت سبب ایجاد جریان الکترون و یونها در مسیرهای مدور و مشخصی درسیستم می شوند. اتم‌های یونیزه نشده آرگون در درون پلاسما دراثر برخورد با ذرات باردار، یونیزه شده و بدین ترتیب محیط پلاسما در طول آزمایش پایدار باقی می ماند. دمای پلاسما بسیار بالا و در حد ۱۰۰۰۰K و دانسیته جریان الکترون در حد ۱۰۱۵cm−۳ است.
نمونه به کمک گاز آرگون (که در لوله کوارتز مرکزی با فشار ۱ l/min جریان دارد) به قسمت بالای لوله ها که حاوی پلاسمای داغ است هدایت می شود. نمونه می تواند به فرم بخار گرم متمرکز (Aerosel) و یا پودر بسیار ریز وارد مشعل شود. پس از تبخیر، تحت تاثیر انرژی الکترون و یون های محیط به اتم های تشکیل دهنده خود تبدیل و در نهایت در محیط بسیار گرم پلاسما برانگیخته می شوند. پرتوهای نور ساطع شده از عناصر پس از عبور از یک تکفام‌ساز (Monochromator) به آشکارساز تکثیر کننده فوتون (Photomultiplier ) می رسند تا شدت آن اندازه گیری شود. بدین ترتیب امکان تشخیص و اندازه گیری غلظت عنصر مورد نظر را فراهم می آورد.
با رسم منحنی شدت خطوط طیفی حاصل از دستگاه، بر حسب غلظت عنصر مورد نظر( منحنی کالیبراسیون) می توان غلظت عناصر را به راحتی تعیین کرد. این منحنی خطی بوده و به دلیل نشر زمینه کم (Low Background) دارای حد تشخیص بسیار پایینی است، به طوریکه برای بیشتر عناصر در محدوده یک تا صد میکروگرم در لیتر(ppb) است.
در مقایسه با روشهای نشری دیگر از جمله شعله (Flame)، در این روش اتمی شدن کاملتر و همچنین مشکل مزاحمت های شیمیایی نیز به مراتب کمتر است. نکته جالب دیگر این است که به دلیل غلظت بالای الکترون آزاد در پلاسما، مزاحمت ناشی از یونیزاسیون اتم ها در این روش بسیار ناچیز است (نشر از یون با نشر از اتم خنثی می تواند متفاوت باشد). از مزیتهای دیگر این روش این است که اتمی شدن عناصر در یک محیط خنثی شیمیایی انجام می گیرد در نتیجه با ممانعت از اکسیداسیون آنالیت (گونه مورد تجزیه)، زمان ماندگاری (Lifetime) بالاتر و حساسیت اندازه گیری نیز بیشتر می شود. عدم توزیع یکسان دمایی در روش هایی مثل جرقه (Spark)، قوس (Arc) و شعله (Flame) سبب ایجاد مشکلاتی مثل خود جذبی (Self Absorption) و خود وارونگی (Self Reversal) می شود. در حالی که یکسان بودن دمای قسمت های مختلف پلاسما سبب حل این مشکلات و افزایش دامنه خطی (Linear Range) این روش را تا چند برابر می شود] [ و در کل کارآیی تکنیک را بالا می برد.
شکل۱- نمایی از مشعل ICP و اجزاء جانبی آن

۲طیف سنجی جرمی توسط پلاسمای جفت شده القایی (ICP-MASS )
طیف سنجی جرمی توسط پلاسمای جفت شده القایی، نوعی از طیف سنجی جرمی است که برای تعیین فلزات و تعدادی از نافلزات در غلظت های پایینی در حد ۱۲-۱۰ کاربرد دارد. در مقایسه با روشهای دیگر ICP-MS دارای سرعت و حساسیت بالاتری است.
در روش ICP-MS پلاسمای آرگون با دمای بالا (K 8000- 6000) به عنوان منبع تولید یون عمل می کند. به این منظور ابتدا پلاسما در مشعلی ازجنس کوارتز تشکیل می شود سپس نمونه به داخل پلاسما مهپاشی شده (Nebulizing) و در دمای بالای پلاسما، تبخیر ، اتمی و یونیزه می شود. به منظور برقراری ارتباط ICP با طیف سنجی جرمی (MS) یونهای خارج شده از پلاسما از طریق یک سری فیلتر به درون طیف سنج جرمی (که معمولا چهار قطبی (Quadropole) است) وارد می شود. در ادامه به مراحل مختلف انجام آنالیز اشاره می شود.
اولین مرحله در اندازه گیری، وارد کردن نمونه است. که به روش هایی مختلفی انجام می شود. مرسوم ترین روش ورود نمونه، استفاده از یک مهپاش (Nebulizer) است. وسیله ای که به کمک آن محلولها را به Aerosol تبدیل می کنند و سپس ائورسل تولید شده به محیط پلاسما انتقال می یابد و یون تولید می شود. روش دیگر ورود نمونه، استفاده از لیزر است. در این روش با استفاده از لیزر نمونه به شکل ابر پر مانندی در آمده و به درون پلاسما وارد می شود. معمولا برای نمونه های جامد از این روش استفاده می شود هر چند که استفاده از این روش مشکلاتی از جمله تهیه استاندارد در آنالیزهای کمی را در بر دارد. روشهای دیگری مثل تبخیر الکترودمایی Electrothermal vaporization (ETV)) ) و تبخیر درون مشعل (in Torch Vaporization (ITV)) نیز وجود دارند که درآن از یک سطح داغ برای تبخیر و ورود نمونه استفاده می شود.
مرحله دوم اندازه گیری، شامل تولید پلاسما و در نهایت ایجاد یون در آن محیط است. گاز آرگون توسط جریان الکتریکی موجود در سیم هایی که اطراف آن را گرفته (سیم پیچ تسلا) یونیزه می شود و پلاسما را تولید می کند. بعد از ورود نمونه دمای بالای پلاسما سبب ایجاد اتم در محیط و در نهایت تولید یون فلزی می  شود:

(-M → M+ + e)

استفاده از گاز آرگون برای تولید پلاسما چندین مزیت دارد که از آن جمله میتوان به موارد زیر اشاره کرد:

۱٫ به دلیل فراوان بودن گاز آرگون، استفاده از آن ارزان تر از بقیه گازهای نجیب است. ( مثلا در جو از واکنش کاهش رادیواکتیوی پتاسیم تولید می شود)
۲٫ اولین پتانسیل یونش آن بالاتر از عناصری مانند هلیوم، فلئور و نئون است بنابراین واکنش الکترون گیری آرگون (Ar+ + e− → Ar) راحت تر از الکترون گیری عنصر مورد نظر (M+ + e− → M) انجام می شود در نتیجه یون فلزی مورد نظر، بیشتر در محیط می ماند.
البته در مواردی محدودی از گاز هلیوم نیز استفاده می شود ولی به دلیل مزایای یاد شده گاز آرگون بیشترین کاربرد را دارد.
گاز آرگون از لوله مرکزی وارد محیط گرم پلاسما می شود. دمای بالای پلاسما شرایط لازم را برای تبدیل درصد بالایی از نمونه به یون، فراهم می کند. این درصد تبدیل، برای ترکیباتی مانند سدیم به ۱۰۰ درصد نیز میرسد و به پتانسیل یونیزاسیون بستگی دارد. با عبور درصدی از یون های تولید شده از درون دو حفره با قطرهای به اندازه ۱ و ۰٫۴ میلیمتر، خلاء لازم برای ورود نمونه به طیف سنج جرمی فراهم می¬شود.
مرحله سوم، ورود یون های آنالیت به طیف سنج جرمی: قبل از جداسازی جرمی باید باریکه ای از یون های مثبت خارج شده از پلاسما (یون های آنالیت) را از سایر اجزاء مزاحم، از جمله یون های خنثی و ذرات جامد (ذرات ناخواسته وارد شده از ICP) جداکرد. شرکت های تجاری مختلف از تکنیک های متفاوتی به این منظور بهره می برند برای مثال شرکت اجیلنت (Agilent) از لنز امگا (Omega Lens) استفاده می کند[ ]. تکنیک‌های مرسوم دیگری از جمله استفاده از هدایت گرهای یونی (چهار قطبی، شش قطبی و…) نیز مورد استفاده قرار می گیرند. به منظور جدا کردن یون های مزاحم، از دو روش کلی استفاده می کنند : روش اول استفاده از سل واکنش های برخوردی (Collision/Reaction cell) است که با نامهای تجاری مختلفی در بازار موجود است. برای مثال شرکت پرکین المر(Perkin –Elmer) [ ] از این نوع سل قبل از جرم سنج چهار قطبی استفاده می کند. روش دوم، استفاده از فضایی برای واکنش های برخوردی است (Collisional Reaction Interface CRI) در این روش یون های مزاحم با ورود گاز برخوردی (مثل هلیوم) و یا گاز واکنش دهنده (مثل هیدروژن) و یا مخلوطی از این دو، تخریب و مزاحمت آنها حذف می گردد.
مرحله چهارم اندازه گیری: پس از حذف مزاحمت ها یونها براساس نسبت جرم به بار (m/z) جداسازی و توسط آشکارساز فوتون افزای ثانویه شناسایی می شوند. برای تجزیه وتحلیل کمی، مقدار فراوانی بدست آمده برای یون خاص را به غلظت آنگونه نسبت می دهند. آنالیز داده ها در یک مجموعه سسیستمهای کامپیوتری انجام می گیرد.

۲-۱ کاربردهای ICP-MS در نانوفناوری

یکی از مراحل اساسی در آنالیز نانو ذرات، تعیین دقیق اندازه و همچنین غلظت این ذرات است. تکنیک های مختلفی از جمله پراکندگی دینامیک نور (Dynamic Light Scattering DLS) ، اسپکتروسکوپی UV/Vis، میکروسکوپی الکترونی عبوری (Transmission Electron Microscopy TEM)، برای اندازه گیری اندازه نانو ذرات مورد استفاده قرار می گیرند ولی کار با این روش ها دارای مشکلاتی مختلفی از جمله وقت گیر بودن، گران بودن و همچنین عدم ارائه اطلاعات کافی درباره ساختار نانو مواد است.
طیف سنجی جرمی توسط پلاسمای جفت شده القایی یکی از روشهای استاندارد در آزمایشگاههای تجزیه است که برای آنالیز بیشتر عناصر مورد استفاده قرار می گیرد. ICP-MS با خواص متفاوتی از جمله آنالیز همزمانی چند عنصر، حد تشخیص پایین و دامنه خطی زیاد، روش مناسبی برای اندازه گیری نانو ذرات مختلف از جمله نانو ذرات معدنی است.
مقالات و گزارش های زیادی در مورد استفاده از روش ICP-MS در اندازه گیری اندازه نانو ذرات منتشر شده است برای مثال دگیولدرDegueldre و همکارانش از مدل تک ذره (Single-particle)برای تعیین اندازه نانو ذرات طلا استفاده کرده اند. یونیزاسیون توسط این روش در پلاسما، سبب تولید ابرهای یونی شده و با نشر نور توسط این یون ها سیگنالی قوی تولید می کند که متناسب است با اندازه نانو ذرات. با استفاده از این روش ذراتی با اندازه ۸۰ تا ۲۵۰ نانومتر را مورد بررسی قرار داده اند. شکل زیر نمایی از دستگاه ICP-MS و مدل تک ذره را برای اندازه گیری اندازه کلوئیدهای طلا نشان می دهد .
شکل۲- نمایی کلی از ساختار  ICP-MS

همچنین گزارشات دیگری نیز از تلفیق ICP-MS با روشهایی مثل ژل الکتروفورز (Gel Electrophoresis) و کروماتوگرافی مایع معکوس برای تعیین توزیع اندازه ذرات وجود دارد. برای مثال برای تعیین اندازه نانو ذرات طلا از تلفیق ICP-MS با کرواتوگرافی مایع بالا با ستون C18 استفاده شده است در این روش هر چه اندازه ذرات کوچکتر باشد زمان بازداری (Retention Time) بیشتر می شود. با تعیین زمان بازداری نمونه های استاندارد حاوی نانو ذرات با اندازه مشخص ، می توان اندازه ذرات مجهول را تعیین کرد. همچنین در تلفیق با ژل الکتروفروز هر چه اندازه ذرات بیشتر باشد زمان مهاجرت نیز بیشتر می شود [ ]. برای مطالعه بیشتر در زمینه روش کروماتوگرافی مایع با کارآیی بالا می‌توانید به مقاله تحت همین نام مراجعه فرمایید.

۳ نتیجه گیری:
روش طیف سنجی پلاسمای کوپل شده القایی از جمله بهترین روش های طیف سنجی برای تعیین نوع و غلظت عناصر مختلف است. این روش دارای حساسیت، حد تشخیص و مزاحمت های طیفی و شیمیایی کمتری نسبت به سایر روش های نشری است. از گاز آرگون برای تولید پلاسما و یونیزاسیون عناصراستفاده می شود. از تلفیق این روش با طیف سنج جرمی روشی با قابلیت های بالا ایجاد می شود، از این روش جهت تعیین اندازه نانو ذرات استفاده می شود.
منابع:

سیستم جامع آموزشی فناوری نانو

  1. Skoog, D.A. “Principle of Instrumental Analysis”, ۳nd Edition, USA: Saunders College Publishing, (1985).
  2. http://edu.nano.ir/index.php/articles/show/61
  3. Sakata, K. “Inductively Coupled Plasma Mass Spectrometer and Method”, US patent 6265717 B1.
  4. Tanner, S., Baranov, V. “A Dynamic Reaction Cell for ICP-MS. Part 2: Reduction of interferences produced within the cell”, J. Am. Soc. Mass Spectrom, Vol. 10, pp. 1083(1999).
  5. Mitrano, D., Ranville, J. F. “ICP-Mass Spectrometry”. Department of Chemistry and Geochemistry Colorado School of Mines Golden, CO USA.
  6. Degueldre, C., Favarger, P.Y., Bitea, C. “Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry “, Anal Chim Acta, Vol. 518, pp 137, (2004).
  7. Scheffer, A., Engelhard, C., Sperling, M., Buscher, W. “Anal Bioanal Chem. “, Vol. 390, pp. 249, (2008)

فروش دستگاه دست دوم، فروش دستگاه کارکرده، فروش دستگاه ریفربیش، فروش دستگاه ریفربیشد، فروش کروماتوگرافی گازی، فروش جذب اتمی، ای سی پی، جی سی مس ،mass ,gc-mass ,gc ,ms ,icp-mass ,furnace ,flame،  فروش جذب اتمی شعله ، فروش جذب اتمی کوره، فروش لامپ جذب اتمی، فروش هالوکاتد لامپ، فروش تیوب گرافیتی، فروش، انالیتیکال، فروش جذب اتمی، فروش جذب اتمی شعله ای، فروش جذب اتمی واریان، فروش جذب اتمی کارکرده،  ای سی پی، فروش نشر اتمی، فروش دستگاه نشر اتمی، فروش هالوکاتد لامپ، فروش جی سی مس، جی سی مس فروش، ۶۸۹۰N ،۶۸۹۰Pluse ,5975xl gc-ms, 7890A GC ,7890B، جذب اتمی دست دوم، جذب اتمی ریفربیشد، کروماتوگرافی دست دوم، فروش دست دوم، icp دست دوم، فروش نشر اتمی دست دوم، فروش gc-mass دست دوم، فروش دستگاه دست دوم، فروش دست دوم، hplc، gc، gc-mass، فروش اتوسمپلر دست دوم، لامپ جذب اتمی دست دوم

واریان، جذب اتمی Refurbished، جذب اتمی varian 220z، جذب اتمی ۲۲۰zeeman، اتوسمپلر PSD، Varian spectraa 220Z Graphite furnace، Varian spectraa 220Z، varian atomic absorption spectrometer،

طیف سنجی پلاسمای جفت شده القایی (ICP) و ترکیب آن با طیف سنج جرمی (ICP-MS)

طیف سنجی پلاسمای جفت شده القایی ICP از جمله روشهای طیف سنجی اتمی است که در آن اتمی شدن عناصر (Atomization) به کمک محیط گرم پلاسما صورت می پذیرد. این روش در مقایسه با روشهای دیگر، روشی حساس تر، با حد تشخیص بهتر و تکرارپذیری بالاتر است. از تلفیق این روش با طیف سنج جرمی (MS) می توان برای افزایش قبلیت های این روش استفاده کرد. از جمله کاربرد های روش طیف سنجی جرمی توسط پلاسمای جفت شده القایی در نانوفناوری، تعیین اندازه نانو ذرات است. تکنیک ها و روش های مختلفی برای این منظور مورد استفاده قرار میگیرد از جمله روش تک ذره، روش کروماتوگرافی و روش های ژل الکتروفورز.
۱ مقدمه: طیف‌ سنجی پلاسمای جفت شده القایی (ICP)
پلاسمای جفت شده القایی (Inductively Coupled Plasma)، از جمله روشهای طیف سنجی نشری (Emission) است که اتم سازی در آن به کمک پلاسمای تولید شده توسط یک گاز بی اثر که عمدتاً آرگون (Ar) است صورت می¬پذیرد. از این روش برای آنالیز عنصری (Elemental Analysis) بیشتر عناصر بجز آرگون (گاز بی اثر) استفاده می شود. به مجموعه‌ای از الکترون‌ها و یون‌های مثبت گازی )بی اثر (که دارای انرژی و دمایی بالا هستند پلاسما گفته می شود، هرچند به دلیل بالا بودن غلظت این دو جزء (کاتیون و الکترون) در کل بار کلی پلاسما تقریبا صفر است.

۲-۱ تجهیزات دستگاهی
پلاسمای جفت شده القایی از یک مشعل با سه لوله متحد المرکز از جنس کوارتز تشکیل شده است. درون هر لوله گاز آرگون (با سرعت جریان های متفاوت) جهت خنک کردن و همچنین انتقال نمونه به درون پلاسما جریان دارد. نمایی از مشعل و سایر اجزاء ICP در شکل۱ آورده شده است. در بالای یکی از لوله های مشعل (بلندترین لوله) یک سیم پیچ القایی (Induction Coil) وجود دارد که نیروی آن توسط یک جنراتور امواج رادیویی (RF Frequency Generator ) تامین می شود.
جرقه تولید شده به کمک سیم پیچ تسلا (القایی) سبب یونیزه شدن گاز آرگون می شود. یون ها و الکترون های حاصل از یونیزاسیون با میدان مغناطیسی تولید شده توسط سیم پیچ القایی برهمکنش می دهند و در نهایت سبب ایجاد جریان الکترون و یونها در مسیرهای مدور و مشخصی درسیستم می شوند. اتم‌های یونیزه نشده آرگون در درون پلاسما دراثر برخورد با ذرات باردار، یونیزه شده و بدین ترتیب محیط پلاسما در طول آزمایش پایدار باقی می ماند. دمای پلاسما بسیار بالا و در حد ۱۰۰۰۰K و دانسیته جریان الکترون در حد ۱۰۱۵cm−۳ است.
نمونه به کمک گاز آرگون (که در لوله کوارتز مرکزی با فشار ۱ l/min جریان دارد) به قسمت بالای لوله ها که حاوی پلاسمای داغ است هدایت می شود. نمونه می تواند به فرم بخار گرم متمرکز (Aerosel) و یا پودر بسیار ریز وارد مشعل شود. پس از تبخیر، تحت تاثیر انرژی الکترون و یون های محیط به اتم های تشکیل دهنده خود تبدیل و در نهایت در محیط بسیار گرم پلاسما برانگیخته می شوند. پرتوهای نور ساطع شده از عناصر پس از عبور از یک تکفام‌ساز (Monochromator) به آشکارساز تکثیر کننده فوتون (Photomultiplier ) می رسند تا شدت آن اندازه گیری شود. بدین ترتیب امکان تشخیص و اندازه گیری غلظت عنصر مورد نظر را فراهم می آورد.
با رسم منحنی شدت خطوط طیفی حاصل از دستگاه، بر حسب غلظت عنصر مورد نظر( منحنی کالیبراسیون) می توان غلظت عناصر را به راحتی تعیین کرد. این منحنی خطی بوده و به دلیل نشر زمینه کم (Low Background) دارای حد تشخیص بسیار پایینی است، به طوریکه برای بیشتر عناصر در محدوده یک تا صد میکروگرم در لیتر(ppb) است.
در مقایسه با روشهای نشری دیگر از جمله شعله (Flame)، در این روش اتمی شدن کاملتر و همچنین مشکل مزاحمت های شیمیایی نیز به مراتب کمتر است. نکته جالب دیگر این است که به دلیل غلظت بالای الکترون آزاد در پلاسما، مزاحمت ناشی از یونیزاسیون اتم ها در این روش بسیار ناچیز است (نشر از یون با نشر از اتم خنثی می تواند متفاوت باشد). از مزیتهای دیگر این روش این است که اتمی شدن عناصر در یک محیط خنثی شیمیایی انجام می گیرد در نتیجه با ممانعت از اکسیداسیون آنالیت (گونه مورد تجزیه)، زمان ماندگاری (Lifetime) بالاتر و حساسیت اندازه گیری نیز بیشتر می شود. عدم توزیع یکسان دمایی در روش هایی مثل جرقه (Spark)، قوس (Arc) و شعله (Flame) سبب ایجاد مشکلاتی مثل خود جذبی (Self Absorption) و خود وارونگی (Self Reversal) می شود. در حالی که یکسان بودن دمای قسمت های مختلف پلاسما سبب حل این مشکلات و افزایش دامنه خطی (Linear Range) این روش را تا چند برابر می شود] [ و در کل کارآیی تکنیک را بالا می برد.
شکل۱- نمایی از مشعل ICP و اجزاء جانبی آن

۲طیف سنجی جرمی توسط پلاسمای جفت شده القایی (ICP-MASS )
طیف سنجی جرمی توسط پلاسمای جفت شده القایی، نوعی از طیف سنجی جرمی است که برای تعیین فلزات و تعدادی از نافلزات در غلظت های پایینی در حد ۱۲-۱۰ کاربرد دارد. در مقایسه با روشهای دیگر ICP-MS دارای سرعت و حساسیت بالاتری است.
در روش ICP-MS پلاسمای آرگون با دمای بالا (K 8000- 6000) به عنوان منبع تولید یون عمل می کند. به این منظور ابتدا پلاسما در مشعلی ازجنس کوارتز تشکیل می شود سپس نمونه به داخل پلاسما مهپاشی شده (Nebulizing) و در دمای بالای پلاسما، تبخیر ، اتمی و یونیزه می شود. به منظور برقراری ارتباط ICP با طیف سنجی جرمی (MS) یونهای خارج شده از پلاسما از طریق یک سری فیلتر به درون طیف سنج جرمی (که معمولا چهار قطبی (Quadropole) است) وارد می شود. در ادامه به مراحل مختلف انجام آنالیز اشاره می شود.
اولین مرحله در اندازه گیری، وارد کردن نمونه است. که به روش هایی مختلفی انجام می شود. مرسوم ترین روش ورود نمونه، استفاده از یک مهپاش (Nebulizer) است. وسیله ای که به کمک آن محلولها را به Aerosol تبدیل می کنند و سپس ائورسل تولید شده به محیط پلاسما انتقال می یابد و یون تولید می شود. روش دیگر ورود نمونه، استفاده از لیزر است. در این روش با استفاده از لیزر نمونه به شکل ابر پر مانندی در آمده و به درون پلاسما وارد می شود. معمولا برای نمونه های جامد از این روش استفاده می شود هر چند که استفاده از این روش مشکلاتی از جمله تهیه استاندارد در آنالیزهای کمی را در بر دارد. روشهای دیگری مثل تبخیر الکترودمایی Electrothermal vaporization (ETV)) ) و تبخیر درون مشعل (in Torch Vaporization (ITV)) نیز وجود دارند که درآن از یک سطح داغ برای تبخیر و ورود نمونه استفاده می شود.
مرحله دوم اندازه گیری، شامل تولید پلاسما و در نهایت ایجاد یون در آن محیط است. گاز آرگون توسط جریان الکتریکی موجود در سیم هایی که اطراف آن را گرفته (سیم پیچ تسلا) یونیزه می شود و پلاسما را تولید می کند. بعد از ورود نمونه دمای بالای پلاسما سبب ایجاد اتم در محیط و در نهایت تولید یون فلزی می  شود:

(-M → M+ + e)

استفاده از گاز آرگون برای تولید پلاسما چندین مزیت دارد که از آن جمله میتوان به موارد زیر اشاره کرد:

۱٫ به دلیل فراوان بودن گاز آرگون، استفاده از آن ارزان تر از بقیه گازهای نجیب است. ( مثلا در جو از واکنش کاهش رادیواکتیوی پتاسیم تولید می شود)
۲٫ اولین پتانسیل یونش آن بالاتر از عناصری مانند هلیوم، فلئور و نئون است بنابراین واکنش الکترون گیری آرگون (Ar+ + e− → Ar) راحت تر از الکترون گیری عنصر مورد نظر (M+ + e− → M) انجام می شود در نتیجه یون فلزی مورد نظر، بیشتر در محیط می ماند.
البته در مواردی محدودی از گاز هلیوم نیز استفاده می شود ولی به دلیل مزایای یاد شده گاز آرگون بیشترین کاربرد را دارد.
گاز آرگون از لوله مرکزی وارد محیط گرم پلاسما می شود. دمای بالای پلاسما شرایط لازم را برای تبدیل درصد بالایی از نمونه به یون، فراهم می کند. این درصد تبدیل، برای ترکیباتی مانند سدیم به ۱۰۰ درصد نیز میرسد و به پتانسیل یونیزاسیون بستگی دارد. با عبور درصدی از یون های تولید شده از درون دو حفره با قطرهای به اندازه ۱ و ۰٫۴ میلیمتر، خلاء لازم برای ورود نمونه به طیف سنج جرمی فراهم می¬شود.
مرحله سوم، ورود یون های آنالیت به طیف سنج جرمی: قبل از جداسازی جرمی باید باریکه ای از یون های مثبت خارج شده از پلاسما (یون های آنالیت) را از سایر اجزاء مزاحم، از جمله یون های خنثی و ذرات جامد (ذرات ناخواسته وارد شده از ICP) جداکرد. شرکت های تجاری مختلف از تکنیک های متفاوتی به این منظور بهره می برند برای مثال شرکت اجیلنت (Agilent) از لنز امگا (Omega Lens) استفاده می کند[ ]. تکنیک‌های مرسوم دیگری از جمله استفاده از هدایت گرهای یونی (چهار قطبی، شش قطبی و…) نیز مورد استفاده قرار می گیرند. به منظور جدا کردن یون های مزاحم، از دو روش کلی استفاده می کنند : روش اول استفاده از سل واکنش های برخوردی (Collision/Reaction cell) است که با نامهای تجاری مختلفی در بازار موجود است. برای مثال شرکت پرکین المر(Perkin –Elmer) [ ] از این نوع سل قبل از جرم سنج چهار قطبی استفاده می کند. روش دوم، استفاده از فضایی برای واکنش های برخوردی است (Collisional Reaction Interface CRI) در این روش یون های مزاحم با ورود گاز برخوردی (مثل هلیوم) و یا گاز واکنش دهنده (مثل هیدروژن) و یا مخلوطی از این دو، تخریب و مزاحمت آنها حذف می گردد.
مرحله چهارم اندازه گیری: پس از حذف مزاحمت ها یونها براساس نسبت جرم به بار (m/z) جداسازی و توسط آشکارساز فوتون افزای ثانویه شناسایی می شوند. برای تجزیه وتحلیل کمی، مقدار فراوانی بدست آمده برای یون خاص را به غلظت آنگونه نسبت می دهند. آنالیز داده ها در یک مجموعه سسیستمهای کامپیوتری انجام می گیرد.

۲-۱ کاربردهای ICP-MS در نانوفناوری

یکی از مراحل اساسی در آنالیز نانو ذرات، تعیین دقیق اندازه و همچنین غلظت این ذرات است. تکنیک های مختلفی از جمله پراکندگی دینامیک نور (Dynamic Light Scattering DLS) ، اسپکتروسکوپی UV/Vis، میکروسکوپی الکترونی عبوری (Transmission Electron Microscopy TEM)، برای اندازه گیری اندازه نانو ذرات مورد استفاده قرار می گیرند ولی کار با این روش ها دارای مشکلاتی مختلفی از جمله وقت گیر بودن، گران بودن و همچنین عدم ارائه اطلاعات کافی درباره ساختار نانو مواد است.
طیف سنجی جرمی توسط پلاسمای جفت شده القایی یکی از روشهای استاندارد در آزمایشگاههای تجزیه است که برای آنالیز بیشتر عناصر مورد استفاده قرار می گیرد. ICP-MS با خواص متفاوتی از جمله آنالیز همزمانی چند عنصر، حد تشخیص پایین و دامنه خطی زیاد، روش مناسبی برای اندازه گیری نانو ذرات مختلف از جمله نانو ذرات معدنی است.
مقالات و گزارش های زیادی در مورد استفاده از روش ICP-MS در اندازه گیری اندازه نانو ذرات منتشر شده است برای مثال دگیولدرDegueldre و همکارانش از مدل تک ذره (Single-particle)برای تعیین اندازه نانو ذرات طلا استفاده کرده اند. یونیزاسیون توسط این روش در پلاسما، سبب تولید ابرهای یونی شده و با نشر نور توسط این یون ها سیگنالی قوی تولید می کند که متناسب است با اندازه نانو ذرات. با استفاده از این روش ذراتی با اندازه ۸۰ تا ۲۵۰ نانومتر را مورد بررسی قرار داده اند. شکل زیر نمایی از دستگاه ICP-MS و مدل تک ذره را برای اندازه گیری اندازه کلوئیدهای طلا نشان می دهد .
شکل۲- نمایی کلی از ساختار  ICP-MS

همچنین گزارشات دیگری نیز از تلفیق ICP-MS با روشهایی مثل ژل الکتروفورز (Gel Electrophoresis) و کروماتوگرافی مایع معکوس برای تعیین توزیع اندازه ذرات وجود دارد. برای مثال برای تعیین اندازه نانو ذرات طلا از تلفیق ICP-MS با کرواتوگرافی مایع بالا با ستون C18 استفاده شده است در این روش هر چه اندازه ذرات کوچکتر باشد زمان بازداری (Retention Time) بیشتر می شود. با تعیین زمان بازداری نمونه های استاندارد حاوی نانو ذرات با اندازه مشخص ، می توان اندازه ذرات مجهول را تعیین کرد. همچنین در تلفیق با ژل الکتروفروز هر چه اندازه ذرات بیشتر باشد زمان مهاجرت نیز بیشتر می شود [ ]. برای مطالعه بیشتر در زمینه روش کروماتوگرافی مایع با کارآیی بالا می‌توانید به مقاله تحت همین نام مراجعه فرمایید.

۳ نتیجه گیری:
روش طیف سنجی پلاسمای کوپل شده القایی از جمله بهترین روش های طیف سنجی برای تعیین نوع و غلظت عناصر مختلف است. این روش دارای حساسیت، حد تشخیص و مزاحمت های طیفی و شیمیایی کمتری نسبت به سایر روش های نشری است. از گاز آرگون برای تولید پلاسما و یونیزاسیون عناصراستفاده می شود. از تلفیق این روش با طیف سنج جرمی روشی با قابلیت های بالا ایجاد می شود، از این روش جهت تعیین اندازه نانو ذرات استفاده می شود.
منابع:

سیستم جامع آموزشی فناوری نانو

  1. Skoog, D.A. “Principle of Instrumental Analysis”, ۳nd Edition, USA: Saunders College Publishing, (1985).
  2. http://edu.nano.ir/index.php/articles/show/61
  3. Sakata, K. “Inductively Coupled Plasma Mass Spectrometer and Method”, US patent 6265717 B1.
  4. Tanner, S., Baranov, V. “A Dynamic Reaction Cell for ICP-MS. Part 2: Reduction of interferences produced within the cell”, J. Am. Soc. Mass Spectrom, Vol. 10, pp. 1083(1999).
  5. Mitrano, D., Ranville, J. F. “ICP-Mass Spectrometry”. Department of Chemistry and Geochemistry Colorado School of Mines Golden, CO USA.
  6. Degueldre, C., Favarger, P.Y., Bitea, C. “Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry “, Anal Chim Acta, Vol. 518, pp 137, (2004).
  7. Scheffer, A., Engelhard, C., Sperling, M., Buscher, W. “Anal Bioanal Chem. “, Vol. 390, pp. 249, (2008)

فروش دستگاه دست دوم، فروش دستگاه کارکرده، فروش دستگاه ریفربیش، فروش دستگاه ریفربیشد، فروش کروماتوگرافی گازی، فروش جذب اتمی، ای سی پی، جی سی مس ،mass ,gc-mass ,gc ,ms ,icp-mass ,furnace ,flame،  فروش جذب اتمی شعله ، فروش جذب اتمی کوره، فروش لامپ جذب اتمی، فروش هالوکاتد لامپ، فروش تیوب گرافیتی، فروش، انالیتیکال، فروش جذب اتمی، فروش جذب اتمی شعله ای، فروش جذب اتمی واریان، فروش جذب اتمی کارکرده،  ای سی پی، فروش نشر اتمی، فروش دستگاه نشر اتمی، فروش هالوکاتد لامپ، فروش جی سی مس، جی سی مس فروش، ۶۸۹۰N ،۶۸۹۰Pluse ,5975xl gc-ms, 7890A GC ,7890B، جذب اتمی دست دوم، جذب اتمی ریفربیشد، کروماتوگرافی دست دوم، فروش دست دوم، icp دست دوم، فروش نشر اتمی دست دوم، فروش gc-mass دست دوم، فروش دستگاه دست دوم، فروش دست دوم، hplc، gc، gc-mass، فروش اتوسمپلر دست دوم، لامپ جذب اتمی دست دوم

واریان، جذب اتمی Refurbished، جذب اتمی varian 220z، جذب اتمی ۲۲۰zeeman، اتوسمپلر PSD، Varian spectraa 220Z Graphite furnace، Varian spectraa 220Z، varian atomic absorption spectrometer،

فروش دستگاه ICP | خرید دستگاه ICP | نمایندگی اجیلنت
ICP

خرید و فروش ICP/OES / قیمت ICP-OES 6500

فروش ICP / خرید ICP کارکرده / قیمت ICP-OES / نماینده thermo/  خرید  ICP اجیلنت / فروش ICP اترمو / ICP-OES 6500

طیف سنجی پلاسمای جفت شده القایی (ICP) و ترکیب آن با طیف سنج جرمی (ICP-MS)

طیف سنجی پلاسمای جفت شده القایی ICP از جمله روشهای طیف سنجی اتمی است که در آن اتمی شدن عناصر (Atomization) به کمک محیط گرم پلاسما صورت می پذیرد. این روش در مقایسه با روشهای دیگر، روشی حساس تر، با حد تشخیص بهتر و تکرارپذیری بالاتر است. از تلفیق این روش با طیف سنج جرمی (MS) می توان برای افزایش قبلیت های این روش استفاده کرد. از جمله کاربرد های روش طیف سنجی جرمی توسط پلاسمای جفت شده القایی در نانوفناوری، تعیین اندازه نانو ذرات است. تکنیک ها و روش های مختلفی برای این منظور مورد استفاده قرار میگیرد از جمله روش تک ذره، روش کروماتوگرافی و روش های ژل الکتروفورز.
۱ مقدمه: طیف‌ سنجی پلاسمای جفت شده القایی (ICP)
پلاسمای جفت شده القایی (Inductively Coupled Plasma)، از جمله روشهای طیف سنجی نشری (Emission) است که اتم سازی در آن به کمک پلاسمای تولید شده توسط یک گاز بی اثر که عمدتاً آرگون (Ar) است صورت می¬پذیرد. از این روش برای آنالیز عنصری (Elemental Analysis) بیشتر عناصر بجز آرگون (گاز بی اثر) استفاده می شود. به مجموعه‌ای از الکترون‌ها و یون‌های مثبت گازی )بی اثر (که دارای انرژی و دمایی بالا هستند پلاسما گفته می شود، هرچند به دلیل بالا بودن غلظت این دو جزء (کاتیون و الکترون) در کل بار کلی پلاسما تقریبا صفر است.

۲-۱ تجهیزات دستگاهی
پلاسمای جفت شده القایی از یک مشعل با سه لوله متحد المرکز از جنس کوارتز تشکیل شده است. درون هر لوله گاز آرگون (با سرعت جریان های متفاوت) جهت خنک کردن و همچنین انتقال نمونه به درون پلاسما جریان دارد. نمایی از مشعل و سایر اجزاء ICP در شکل۱ آورده شده است. در بالای یکی از لوله های مشعل (بلندترین لوله) یک سیم پیچ القایی (Induction Coil) وجود دارد که نیروی آن توسط یک جنراتور امواج رادیویی (RF Frequency Generator ) تامین می شود.
جرقه تولید شده به کمک سیم پیچ تسلا (القایی) سبب یونیزه شدن گاز آرگون می شود. یون ها و الکترون های حاصل از یونیزاسیون با میدان مغناطیسی تولید شده توسط سیم پیچ القایی برهمکنش می دهند و در نهایت سبب ایجاد جریان الکترون و یونها در مسیرهای مدور و مشخصی درسیستم می شوند. اتم‌های یونیزه نشده آرگون در درون پلاسما دراثر برخورد با ذرات باردار، یونیزه شده و بدین ترتیب محیط پلاسما در طول آزمایش پایدار باقی می ماند. دمای پلاسما بسیار بالا و در حد ۱۰۰۰۰K و دانسیته جریان الکترون در حد ۱۰۱۵cm−۳ است.
نمونه به کمک گاز آرگون (که در لوله کوارتز مرکزی با فشار ۱ l/min جریان دارد) به قسمت بالای لوله ها که حاوی پلاسمای داغ است هدایت می شود. نمونه می تواند به فرم بخار گرم متمرکز (Aerosel) و یا پودر بسیار ریز وارد مشعل شود. پس از تبخیر، تحت تاثیر انرژی الکترون و یون های محیط به اتم های تشکیل دهنده خود تبدیل و در نهایت در محیط بسیار گرم پلاسما برانگیخته می شوند. پرتوهای نور ساطع شده از عناصر پس از عبور از یک تکفام‌ساز (Monochromator) به آشکارساز تکثیر کننده فوتون (Photomultiplier ) می رسند تا شدت آن اندازه گیری شود. بدین ترتیب امکان تشخیص و اندازه گیری غلظت عنصر مورد نظر را فراهم می آورد.
با رسم منحنی شدت خطوط طیفی حاصل از دستگاه، بر حسب غلظت عنصر مورد نظر( منحنی کالیبراسیون) می توان غلظت عناصر را به راحتی تعیین کرد. این منحنی خطی بوده و به دلیل نشر زمینه کم (Low Background) دارای حد تشخیص بسیار پایینی است، به طوریکه برای بیشتر عناصر در محدوده یک تا صد میکروگرم در لیتر(ppb) است.
در مقایسه با روشهای نشری دیگر از جمله شعله (Flame)، در این روش اتمی شدن کاملتر و همچنین مشکل مزاحمت های شیمیایی نیز به مراتب کمتر است. نکته جالب دیگر این است که به دلیل غلظت بالای الکترون آزاد در پلاسما، مزاحمت ناشی از یونیزاسیون اتم ها در این روش بسیار ناچیز است (نشر از یون با نشر از اتم خنثی می تواند متفاوت باشد). از مزیتهای دیگر این روش این است که اتمی شدن عناصر در یک محیط خنثی شیمیایی انجام می گیرد در نتیجه با ممانعت از اکسیداسیون آنالیت (گونه مورد تجزیه)، زمان ماندگاری (Lifetime) بالاتر و حساسیت اندازه گیری نیز بیشتر می شود. عدم توزیع یکسان دمایی در روش هایی مثل جرقه (Spark)، قوس (Arc) و شعله (Flame) سبب ایجاد مشکلاتی مثل خود جذبی (Self Absorption) و خود وارونگی (Self Reversal) می شود. در حالی که یکسان بودن دمای قسمت های مختلف پلاسما سبب حل این مشکلات و افزایش دامنه خطی (Linear Range) این روش را تا چند برابر می شود] [ و در کل کارآیی تکنیک را بالا می برد.
شکل۱- نمایی از مشعل ICP و اجزاء جانبی آن

۲طیف سنجی جرمی توسط پلاسمای جفت شده القایی (ICP-MASS )
طیف سنجی جرمی توسط پلاسمای جفت شده القایی، نوعی از طیف سنجی جرمی است که برای تعیین فلزات و تعدادی از نافلزات در غلظت های پایینی در حد ۱۲-۱۰ کاربرد دارد. در مقایسه با روشهای دیگر ICP-MS دارای سرعت و حساسیت بالاتری است.
در روش ICP-MS پلاسمای آرگون با دمای بالا (K 8000- 6000) به عنوان منبع تولید یون عمل می کند. به این منظور ابتدا پلاسما در مشعلی ازجنس کوارتز تشکیل می شود سپس نمونه به داخل پلاسما مهپاشی شده (Nebulizing) و در دمای بالای پلاسما، تبخیر ، اتمی و یونیزه می شود. به منظور برقراری ارتباط ICP با طیف سنجی جرمی (MS) یونهای خارج شده از پلاسما از طریق یک سری فیلتر به درون طیف سنج جرمی (که معمولا چهار قطبی (Quadropole) است) وارد می شود. در ادامه به مراحل مختلف انجام آنالیز اشاره می شود.
اولین مرحله در اندازه گیری، وارد کردن نمونه است. که به روش هایی مختلفی انجام می شود. مرسوم ترین روش ورود نمونه، استفاده از یک مهپاش (Nebulizer) است. وسیله ای که به کمک آن محلولها را به Aerosol تبدیل می کنند و سپس ائورسل تولید شده به محیط پلاسما انتقال می یابد و یون تولید می شود. روش دیگر ورود نمونه، استفاده از لیزر است. در این روش با استفاده از لیزر نمونه به شکل ابر پر مانندی در آمده و به درون پلاسما وارد می شود. معمولا برای نمونه های جامد از این روش استفاده می شود هر چند که استفاده از این روش مشکلاتی از جمله تهیه استاندارد در آنالیزهای کمی را در بر دارد. روشهای دیگری مثل تبخیر الکترودمایی Electrothermal vaporization (ETV)) ) و تبخیر درون مشعل (in Torch Vaporization (ITV)) نیز وجود دارند که درآن از یک سطح داغ برای تبخیر و ورود نمونه استفاده می شود.
مرحله دوم اندازه گیری، شامل تولید پلاسما و در نهایت ایجاد یون در آن محیط است. گاز آرگون توسط جریان الکتریکی موجود در سیم هایی که اطراف آن را گرفته (سیم پیچ تسلا) یونیزه می شود و پلاسما را تولید می کند. بعد از ورود نمونه دمای بالای پلاسما سبب ایجاد اتم در محیط و در نهایت تولید یون فلزی می  شود:

(-M → M+ + e)

استفاده از گاز آرگون برای تولید پلاسما چندین مزیت دارد که از آن جمله میتوان به موارد زیر اشاره کرد:

۱٫ به دلیل فراوان بودن گاز آرگون، استفاده از آن ارزان تر از بقیه گازهای نجیب است. ( مثلا در جو از واکنش کاهش رادیواکتیوی پتاسیم تولید می شود)
۲٫ اولین پتانسیل یونش آن بالاتر از عناصری مانند هلیوم، فلئور و نئون است بنابراین واکنش الکترون گیری آرگون (Ar+ + e− → Ar) راحت تر از الکترون گیری عنصر مورد نظر (M+ + e− → M) انجام می شود در نتیجه یون فلزی مورد نظر، بیشتر در محیط می ماند.
البته در مواردی محدودی از گاز هلیوم نیز استفاده می شود ولی به دلیل مزایای یاد شده گاز آرگون بیشترین کاربرد را دارد.
گاز آرگون از لوله مرکزی وارد محیط گرم پلاسما می شود. دمای بالای پلاسما شرایط لازم را برای تبدیل درصد بالایی از نمونه به یون، فراهم می کند. این درصد تبدیل، برای ترکیباتی مانند سدیم به ۱۰۰ درصد نیز میرسد و به پتانسیل یونیزاسیون بستگی دارد. با عبور درصدی از یون های تولید شده از درون دو حفره با قطرهای به اندازه ۱ و ۰٫۴ میلیمتر، خلاء لازم برای ورود نمونه به طیف سنج جرمی فراهم می¬شود.
مرحله سوم، ورود یون های آنالیت به طیف سنج جرمی: قبل از جداسازی جرمی باید باریکه ای از یون های مثبت خارج شده از پلاسما (یون های آنالیت) را از سایر اجزاء مزاحم، از جمله یون های خنثی و ذرات جامد (ذرات ناخواسته وارد شده از ICP) جداکرد. شرکت های تجاری مختلف از تکنیک های متفاوتی به این منظور بهره می برند برای مثال شرکت اجیلنت (Agilent) از لنز امگا (Omega Lens) استفاده می کند[ ]. تکنیک‌های مرسوم دیگری از جمله استفاده از هدایت گرهای یونی (چهار قطبی، شش قطبی و…) نیز مورد استفاده قرار می گیرند. به منظور جدا کردن یون های مزاحم، از دو روش کلی استفاده می کنند : روش اول استفاده از سل واکنش های برخوردی (Collision/Reaction cell) است که با نامهای تجاری مختلفی در بازار موجود است. برای مثال شرکت پرکین المر(Perkin –Elmer) [ ] از این نوع سل قبل از جرم سنج چهار قطبی استفاده می کند. روش دوم، استفاده از فضایی برای واکنش های برخوردی است (Collisional Reaction Interface CRI) در این روش یون های مزاحم با ورود گاز برخوردی (مثل هلیوم) و یا گاز واکنش دهنده (مثل هیدروژن) و یا مخلوطی از این دو، تخریب و مزاحمت آنها حذف می گردد.
مرحله چهارم اندازه گیری: پس از حذف مزاحمت ها یونها براساس نسبت جرم به بار (m/z) جداسازی و توسط آشکارساز فوتون افزای ثانویه شناسایی می شوند. برای تجزیه وتحلیل کمی، مقدار فراوانی بدست آمده برای یون خاص را به غلظت آنگونه نسبت می دهند. آنالیز داده ها در یک مجموعه سسیستمهای کامپیوتری انجام می گیرد.

۲-۱ کاربردهای ICP-MS در نانوفناوری

یکی از مراحل اساسی در آنالیز نانو ذرات، تعیین دقیق اندازه و همچنین غلظت این ذرات است. تکنیک های مختلفی از جمله پراکندگی دینامیک نور (Dynamic Light Scattering DLS) ، اسپکتروسکوپی UV/Vis، میکروسکوپی الکترونی عبوری (Transmission Electron Microscopy TEM)، برای اندازه گیری اندازه نانو ذرات مورد استفاده قرار می گیرند ولی کار با این روش ها دارای مشکلاتی مختلفی از جمله وقت گیر بودن، گران بودن و همچنین عدم ارائه اطلاعات کافی درباره ساختار نانو مواد است.
طیف سنجی جرمی توسط پلاسمای جفت شده القایی یکی از روشهای استاندارد در آزمایشگاههای تجزیه است که برای آنالیز بیشتر عناصر مورد استفاده قرار می گیرد. ICP-MS با خواص متفاوتی از جمله آنالیز همزمانی چند عنصر، حد تشخیص پایین و دامنه خطی زیاد، روش مناسبی برای اندازه گیری نانو ذرات مختلف از جمله نانو ذرات معدنی است.
مقالات و گزارش های زیادی در مورد استفاده از روش ICP-MS در اندازه گیری اندازه نانو ذرات منتشر شده است برای مثال دگیولدرDegueldre و همکارانش از مدل تک ذره (Single-particle)برای تعیین اندازه نانو ذرات طلا استفاده کرده اند. یونیزاسیون توسط این روش در پلاسما، سبب تولید ابرهای یونی شده و با نشر نور توسط این یون ها سیگنالی قوی تولید می کند که متناسب است با اندازه نانو ذرات. با استفاده از این روش ذراتی با اندازه ۸۰ تا ۲۵۰ نانومتر را مورد بررسی قرار داده اند. شکل زیر نمایی از دستگاه ICP-MS و مدل تک ذره را برای اندازه گیری اندازه کلوئیدهای طلا نشان می دهد .
شکل۲- نمایی کلی از ساختار  ICP-MS

همچنین گزارشات دیگری نیز از تلفیق ICP-MS با روشهایی مثل ژل الکتروفورز (Gel Electrophoresis) و کروماتوگرافی مایع معکوس برای تعیین توزیع اندازه ذرات وجود دارد. برای مثال برای تعیین اندازه نانو ذرات طلا از تلفیق ICP-MS با کرواتوگرافی مایع بالا با ستون C18 استفاده شده است در این روش هر چه اندازه ذرات کوچکتر باشد زمان بازداری (Retention Time) بیشتر می شود. با تعیین زمان بازداری نمونه های استاندارد حاوی نانو ذرات با اندازه مشخص ، می توان اندازه ذرات مجهول را تعیین کرد. همچنین در تلفیق با ژل الکتروفروز هر چه اندازه ذرات بیشتر باشد زمان مهاجرت نیز بیشتر می شود [ ]. برای مطالعه بیشتر در زمینه روش کروماتوگرافی مایع با کارآیی بالا می‌توانید به مقاله تحت همین نام مراجعه فرمایید.

۳ نتیجه گیری:
روش طیف سنجی پلاسمای کوپل شده القایی از جمله بهترین روش های طیف سنجی برای تعیین نوع و غلظت عناصر مختلف است. این روش دارای حساسیت، حد تشخیص و مزاحمت های طیفی و شیمیایی کمتری نسبت به سایر روش های نشری است. از گاز آرگون برای تولید پلاسما و یونیزاسیون عناصراستفاده می شود. از تلفیق این روش با طیف سنج جرمی روشی با قابلیت های بالا ایجاد می شود، از این روش جهت تعیین اندازه نانو ذرات استفاده می شود.
منابع:

سیستم جامع آموزشی فناوری نانو

  1. Skoog, D.A. “Principle of Instrumental Analysis”, ۳nd Edition, USA: Saunders College Publishing, (1985).
  2. http://edu.nano.ir/index.php/articles/show/61
  3. Sakata, K. “Inductively Coupled Plasma Mass Spectrometer and Method”, US patent 6265717 B1.
  4. Tanner, S., Baranov, V. “A Dynamic Reaction Cell for ICP-MS. Part 2: Reduction of interferences produced within the cell”, J. Am. Soc. Mass Spectrom, Vol. 10, pp. 1083(1999).
  5. Mitrano, D., Ranville, J. F. “ICP-Mass Spectrometry”. Department of Chemistry and Geochemistry Colorado School of Mines Golden, CO USA.
  6. Degueldre, C., Favarger, P.Y., Bitea, C. “Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry “, Anal Chim Acta, Vol. 518, pp 137, (2004).
  7. Scheffer, A., Engelhard, C., Sperling, M., Buscher, W. “Anal Bioanal Chem. “, Vol. 390, pp. 249, (2008)

 

 

فروش دستگاه دست دوم، فروش دستگاه کارکرده، فروش دستگاه ریفربیش، فروش دستگاه ریفربیشد، فروش کروماتوگرافی گازی، فروش جذب اتمی، ای سی پی، جی سی مس ،mass ,gc-mass ,gc ,ms ,icp-mass ,furnace ,flame،  فروش جذب اتمی شعله ، فروش جذب اتمی کوره، فروش لامپ جذب اتمی، فروش هالوکاتد لامپ، فروش تیوب گرافیتی، فروش، انالیتیکال، فروش جذب اتمی، فروش جذب اتمی شعله ای، فروش جذب اتمی واریان، فروش جذب اتمی کارکرده،  ای سی پی، فروش نشر اتمی، فروش دستگاه نشر اتمی، فروش هالوکاتد لامپ، فروش جی سی مس، جی سی مس فروش، ۶۸۹۰N ،۶۸۹۰Pluse ,5975xl gc-ms, 7890A GC ,7890B، جذب اتمی دست دوم، جذب اتمی ریفربیشد، کروماتوگرافی دست دوم، فروش دست دوم، icp دست دوم، فروش نشر اتمی دست دوم، فروش gc-mass دست دوم، فروش دستگاه دست دوم، فروش دست دوم، hplc، gc، gc-mass، فروش اتوسمپلر دست دوم، لامپ جذب اتمی دست دوم

 

واریان، جذب اتمی Refurbished، جذب اتمی varian 220z، جذب اتمی ۲۲۰zeeman، اتوسمپلر PSD، Varian spectraa 220Z Graphite furnace، Varian spectraa 220Z، varian atomic absorption spectrometer،

 

طیف سنجی پلاسمای جفت شده القایی (ICP) و ترکیب آن با طیف سنج جرمی (ICP-MS)

طیف سنجی پلاسمای جفت شده القایی ICP از جمله روشهای طیف سنجی اتمی است که در آن اتمی شدن عناصر (Atomization) به کمک محیط گرم پلاسما صورت می پذیرد. این روش در مقایسه با روشهای دیگر، روشی حساس تر، با حد تشخیص بهتر و تکرارپذیری بالاتر است. از تلفیق این روش با طیف سنج جرمی (MS) می توان برای افزایش قبلیت های این روش استفاده کرد. از جمله کاربرد های روش طیف سنجی جرمی توسط پلاسمای جفت شده القایی در نانوفناوری، تعیین اندازه نانو ذرات است. تکنیک ها و روش های مختلفی برای این منظور مورد استفاده قرار میگیرد از جمله روش تک ذره، روش کروماتوگرافی و روش های ژل الکتروفورز.
۱ مقدمه: طیف‌ سنجی پلاسمای جفت شده القایی (ICP)
پلاسمای جفت شده القایی (Inductively Coupled Plasma)، از جمله روشهای طیف سنجی نشری (Emission) است که اتم سازی در آن به کمک پلاسمای تولید شده توسط یک گاز بی اثر که عمدتاً آرگون (Ar) است صورت می¬پذیرد. از این روش برای آنالیز عنصری (Elemental Analysis) بیشتر عناصر بجز آرگون (گاز بی اثر) استفاده می شود. به مجموعه‌ای از الکترون‌ها و یون‌های مثبت گازی )بی اثر (که دارای انرژی و دمایی بالا هستند پلاسما گفته می شود، هرچند به دلیل بالا بودن غلظت این دو جزء (کاتیون و الکترون) در کل بار کلی پلاسما تقریبا صفر است.

۲-۱ تجهیزات دستگاهی
پلاسمای جفت شده القایی از یک مشعل با سه لوله متحد المرکز از جنس کوارتز تشکیل شده است. درون هر لوله گاز آرگون (با سرعت جریان های متفاوت) جهت خنک کردن و همچنین انتقال نمونه به درون پلاسما جریان دارد. نمایی از مشعل و سایر اجزاء ICP در شکل۱ آورده شده است. در بالای یکی از لوله های مشعل (بلندترین لوله) یک سیم پیچ القایی (Induction Coil) وجود دارد که نیروی آن توسط یک جنراتور امواج رادیویی (RF Frequency Generator ) تامین می شود.
جرقه تولید شده به کمک سیم پیچ تسلا (القایی) سبب یونیزه شدن گاز آرگون می شود. یون ها و الکترون های حاصل از یونیزاسیون با میدان مغناطیسی تولید شده توسط سیم پیچ القایی برهمکنش می دهند و در نهایت سبب ایجاد جریان الکترون و یونها در مسیرهای مدور و مشخصی درسیستم می شوند. اتم‌های یونیزه نشده آرگون در درون پلاسما دراثر برخورد با ذرات باردار، یونیزه شده و بدین ترتیب محیط پلاسما در طول آزمایش پایدار باقی می ماند. دمای پلاسما بسیار بالا و در حد ۱۰۰۰۰K و دانسیته جریان الکترون در حد ۱۰۱۵cm−۳ است.
نمونه به کمک گاز آرگون (که در لوله کوارتز مرکزی با فشار ۱ l/min جریان دارد) به قسمت بالای لوله ها که حاوی پلاسمای داغ است هدایت می شود. نمونه می تواند به فرم بخار گرم متمرکز (Aerosel) و یا پودر بسیار ریز وارد مشعل شود. پس از تبخیر، تحت تاثیر انرژی الکترون و یون های محیط به اتم های تشکیل دهنده خود تبدیل و در نهایت در محیط بسیار گرم پلاسما برانگیخته می شوند. پرتوهای نور ساطع شده از عناصر پس از عبور از یک تکفام‌ساز (Monochromator) به آشکارساز تکثیر کننده فوتون (Photomultiplier ) می رسند تا شدت آن اندازه گیری شود. بدین ترتیب امکان تشخیص و اندازه گیری غلظت عنصر مورد نظر را فراهم می آورد.
با رسم منحنی شدت خطوط طیفی حاصل از دستگاه، بر حسب غلظت عنصر مورد نظر( منحنی کالیبراسیون) می توان غلظت عناصر را به راحتی تعیین کرد. این منحنی خطی بوده و به دلیل نشر زمینه کم (Low Background) دارای حد تشخیص بسیار پایینی است، به طوریکه برای بیشتر عناصر در محدوده یک تا صد میکروگرم در لیتر(ppb) است.
در مقایسه با روشهای نشری دیگر از جمله شعله (Flame)، در این روش اتمی شدن کاملتر و همچنین مشکل مزاحمت های شیمیایی نیز به مراتب کمتر است. نکته جالب دیگر این است که به دلیل غلظت بالای الکترون آزاد در پلاسما، مزاحمت ناشی از یونیزاسیون اتم ها در این روش بسیار ناچیز است (نشر از یون با نشر از اتم خنثی می تواند متفاوت باشد). از مزیتهای دیگر این روش این است که اتمی شدن عناصر در یک محیط خنثی شیمیایی انجام می گیرد در نتیجه با ممانعت از اکسیداسیون آنالیت (گونه مورد تجزیه)، زمان ماندگاری (Lifetime) بالاتر و حساسیت اندازه گیری نیز بیشتر می شود. عدم توزیع یکسان دمایی در روش هایی مثل جرقه (Spark)، قوس (Arc) و شعله (Flame) سبب ایجاد مشکلاتی مثل خود جذبی (Self Absorption) و خود وارونگی (Self Reversal) می شود. در حالی که یکسان بودن دمای قسمت های مختلف پلاسما سبب حل این مشکلات و افزایش دامنه خطی (Linear Range) این روش را تا چند برابر می شود] [ و در کل کارآیی تکنیک را بالا می برد.
شکل۱- نمایی از مشعل ICP و اجزاء جانبی آن

۲طیف سنجی جرمی توسط پلاسمای جفت شده القایی (ICP-MASS )
طیف سنجی جرمی توسط پلاسمای جفت شده القایی، نوعی از طیف سنجی جرمی است که برای تعیین فلزات و تعدادی از نافلزات در غلظت های پایینی در حد ۱۲-۱۰ کاربرد دارد. در مقایسه با روشهای دیگر ICP-MS دارای سرعت و حساسیت بالاتری است.
در روش ICP-MS پلاسمای آرگون با دمای بالا (K 8000- 6000) به عنوان منبع تولید یون عمل می کند. به این منظور ابتدا پلاسما در مشعلی ازجنس کوارتز تشکیل می شود سپس نمونه به داخل پلاسما مهپاشی شده (Nebulizing) و در دمای بالای پلاسما، تبخیر ، اتمی و یونیزه می شود. به منظور برقراری ارتباط ICP با طیف سنجی جرمی (MS) یونهای خارج شده از پلاسما از طریق یک سری فیلتر به درون طیف سنج جرمی (که معمولا چهار قطبی (Quadropole) است) وارد می شود. در ادامه به مراحل مختلف انجام آنالیز اشاره می شود.
اولین مرحله در اندازه گیری، وارد کردن نمونه است. که به روش هایی مختلفی انجام می شود. مرسوم ترین روش ورود نمونه، استفاده از یک مهپاش (Nebulizer) است. وسیله ای که به کمک آن محلولها را به Aerosol تبدیل می کنند و سپس ائورسل تولید شده به محیط پلاسما انتقال می یابد و یون تولید می شود. روش دیگر ورود نمونه، استفاده از لیزر است. در این روش با استفاده از لیزر نمونه به شکل ابر پر مانندی در آمده و به درون پلاسما وارد می شود. معمولا برای نمونه های جامد از این روش استفاده می شود هر چند که استفاده از این روش مشکلاتی از جمله تهیه استاندارد در آنالیزهای کمی را در بر دارد. روشهای دیگری مثل تبخیر الکترودمایی Electrothermal vaporization (ETV)) ) و تبخیر درون مشعل (in Torch Vaporization (ITV)) نیز وجود دارند که درآن از یک سطح داغ برای تبخیر و ورود نمونه استفاده می شود.
مرحله دوم اندازه گیری، شامل تولید پلاسما و در نهایت ایجاد یون در آن محیط است. گاز آرگون توسط جریان الکتریکی موجود در سیم هایی که اطراف آن را گرفته (سیم پیچ تسلا) یونیزه می شود و پلاسما را تولید می کند. بعد از ورود نمونه دمای بالای پلاسما سبب ایجاد اتم در محیط و در نهایت تولید یون فلزی می  شود:

(-M → M+ + e)

استفاده از گاز آرگون برای تولید پلاسما چندین مزیت دارد که از آن جمله میتوان به موارد زیر اشاره کرد:

۱٫ به دلیل فراوان بودن گاز آرگون، استفاده از آن ارزان تر از بقیه گازهای نجیب است. ( مثلا در جو از واکنش کاهش رادیواکتیوی پتاسیم تولید می شود)
۲٫ اولین پتانسیل یونش آن بالاتر از عناصری مانند هلیوم، فلئور و نئون است بنابراین واکنش الکترون گیری آرگون (Ar+ + e− → Ar) راحت تر از الکترون گیری عنصر مورد نظر (M+ + e− → M) انجام می شود در نتیجه یون فلزی مورد نظر، بیشتر در محیط می ماند.
البته در مواردی محدودی از گاز هلیوم نیز استفاده می شود ولی به دلیل مزایای یاد شده گاز آرگون بیشترین کاربرد را دارد.
گاز آرگون از لوله مرکزی وارد محیط گرم پلاسما می شود. دمای بالای پلاسما شرایط لازم را برای تبدیل درصد بالایی از نمونه به یون، فراهم می کند. این درصد تبدیل، برای ترکیباتی مانند سدیم به ۱۰۰ درصد نیز میرسد و به پتانسیل یونیزاسیون بستگی دارد. با عبور درصدی از یون های تولید شده از درون دو حفره با قطرهای به اندازه ۱ و ۰٫۴ میلیمتر، خلاء لازم برای ورود نمونه به طیف سنج جرمی فراهم می¬شود.
مرحله سوم، ورود یون های آنالیت به طیف سنج جرمی: قبل از جداسازی جرمی باید باریکه ای از یون های مثبت خارج شده از پلاسما (یون های آنالیت) را از سایر اجزاء مزاحم، از جمله یون های خنثی و ذرات جامد (ذرات ناخواسته وارد شده از ICP) جداکرد. شرکت های تجاری مختلف از تکنیک های متفاوتی به این منظور بهره می برند برای مثال شرکت اجیلنت (Agilent) از لنز امگا (Omega Lens) استفاده می کند[ ]. تکنیک‌های مرسوم دیگری از جمله استفاده از هدایت گرهای یونی (چهار قطبی، شش قطبی و…) نیز مورد استفاده قرار می گیرند. به منظور جدا کردن یون های مزاحم، از دو روش کلی استفاده می کنند : روش اول استفاده از سل واکنش های برخوردی (Collision/Reaction cell) است که با نامهای تجاری مختلفی در بازار موجود است. برای مثال شرکت پرکین المر(Perkin –Elmer) [ ] از این نوع سل قبل از جرم سنج چهار قطبی استفاده می کند. روش دوم، استفاده از فضایی برای واکنش های برخوردی است (Collisional Reaction Interface CRI) در این روش یون های مزاحم با ورود گاز برخوردی (مثل هلیوم) و یا گاز واکنش دهنده (مثل هیدروژن) و یا مخلوطی از این دو، تخریب و مزاحمت آنها حذف می گردد.
مرحله چهارم اندازه گیری: پس از حذف مزاحمت ها یونها براساس نسبت جرم به بار (m/z) جداسازی و توسط آشکارساز فوتون افزای ثانویه شناسایی می شوند. برای تجزیه وتحلیل کمی، مقدار فراوانی بدست آمده برای یون خاص را به غلظت آنگونه نسبت می دهند. آنالیز داده ها در یک مجموعه سسیستمهای کامپیوتری انجام می گیرد.

۲-۱ کاربردهای ICP-MS در نانوفناوری

یکی از مراحل اساسی در آنالیز نانو ذرات، تعیین دقیق اندازه و همچنین غلظت این ذرات است. تکنیک های مختلفی از جمله پراکندگی دینامیک نور (Dynamic Light Scattering DLS) ، اسپکتروسکوپی UV/Vis، میکروسکوپی الکترونی عبوری (Transmission Electron Microscopy TEM)، برای اندازه گیری اندازه نانو ذرات مورد استفاده قرار می گیرند ولی کار با این روش ها دارای مشکلاتی مختلفی از جمله وقت گیر بودن، گران بودن و همچنین عدم ارائه اطلاعات کافی درباره ساختار نانو مواد است.
طیف سنجی جرمی توسط پلاسمای جفت شده القایی یکی از روشهای استاندارد در آزمایشگاههای تجزیه است که برای آنالیز بیشتر عناصر مورد استفاده قرار می گیرد. ICP-MS با خواص متفاوتی از جمله آنالیز همزمانی چند عنصر، حد تشخیص پایین و دامنه خطی زیاد، روش مناسبی برای اندازه گیری نانو ذرات مختلف از جمله نانو ذرات معدنی است.
مقالات و گزارش های زیادی در مورد استفاده از روش ICP-MS در اندازه گیری اندازه نانو ذرات منتشر شده است برای مثال دگیولدرDegueldre و همکارانش از مدل تک ذره (Single-particle)برای تعیین اندازه نانو ذرات طلا استفاده کرده اند. یونیزاسیون توسط این روش در پلاسما، سبب تولید ابرهای یونی شده و با نشر نور توسط این یون ها سیگنالی قوی تولید می کند که متناسب است با اندازه نانو ذرات. با استفاده از این روش ذراتی با اندازه ۸۰ تا ۲۵۰ نانومتر را مورد بررسی قرار داده اند. شکل زیر نمایی از دستگاه ICP-MS و مدل تک ذره را برای اندازه گیری اندازه کلوئیدهای طلا نشان می دهد .
شکل۲- نمایی کلی از ساختار  ICP-MS

همچنین گزارشات دیگری نیز از تلفیق ICP-MS با روشهایی مثل ژل الکتروفورز (Gel Electrophoresis) و کروماتوگرافی مایع معکوس برای تعیین توزیع اندازه ذرات وجود دارد. برای مثال برای تعیین اندازه نانو ذرات طلا از تلفیق ICP-MS با کرواتوگرافی مایع بالا با ستون C18 استفاده شده است در این روش هر چه اندازه ذرات کوچکتر باشد زمان بازداری (Retention Time) بیشتر می شود. با تعیین زمان بازداری نمونه های استاندارد حاوی نانو ذرات با اندازه مشخص ، می توان اندازه ذرات مجهول را تعیین کرد. همچنین در تلفیق با ژل الکتروفروز هر چه اندازه ذرات بیشتر باشد زمان مهاجرت نیز بیشتر می شود [ ]. برای مطالعه بیشتر در زمینه روش کروماتوگرافی مایع با کارآیی بالا می‌توانید به مقاله تحت همین نام مراجعه فرمایید.

۳ نتیجه گیری:
روش طیف سنجی پلاسمای کوپل شده القایی از جمله بهترین روش های طیف سنجی برای تعیین نوع و غلظت عناصر مختلف است. این روش دارای حساسیت، حد تشخیص و مزاحمت های طیفی و شیمیایی کمتری نسبت به سایر روش های نشری است. از گاز آرگون برای تولید پلاسما و یونیزاسیون عناصراستفاده می شود. از تلفیق این روش با طیف سنج جرمی روشی با قابلیت های بالا ایجاد می شود، از این روش جهت تعیین اندازه نانو ذرات استفاده می شود.
منابع:

سیستم جامع آموزشی فناوری نانو

  1. Skoog, D.A. “Principle of Instrumental Analysis”, ۳nd Edition, USA: Saunders College Publishing, (1985).
  2. http://edu.nano.ir/index.php/articles/show/61
  3. Sakata, K. “Inductively Coupled Plasma Mass Spectrometer and Method”, US patent 6265717 B1.
  4. Tanner, S., Baranov, V. “A Dynamic Reaction Cell for ICP-MS. Part 2: Reduction of interferences produced within the cell”, J. Am. Soc. Mass Spectrom, Vol. 10, pp. 1083(1999).
  5. Mitrano, D., Ranville, J. F. “ICP-Mass Spectrometry”. Department of Chemistry and Geochemistry Colorado School of Mines Golden, CO USA.
  6. Degueldre, C., Favarger, P.Y., Bitea, C. “Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry “, Anal Chim Acta, Vol. 518, pp 137, (2004).
  7. Scheffer, A., Engelhard, C., Sperling, M., Buscher, W. “Anal Bioanal Chem. “, Vol. 390, pp. 249, (2008)

 

 

فروش دستگاه دست دوم، فروش دستگاه کارکرده، فروش دستگاه ریفربیش، فروش دستگاه ریفربیشد، فروش کروماتوگرافی گازی، فروش جذب اتمی، ای سی پی، جی سی مس ،mass ,gc-mass ,gc ,ms ,icp-mass ,furnace ,flame،  فروش جذب اتمی شعله ، فروش جذب اتمی کوره، فروش لامپ جذب اتمی، فروش هالوکاتد لامپ، فروش تیوب گرافیتی، فروش، انالیتیکال، فروش جذب اتمی، فروش جذب اتمی شعله ای، فروش جذب اتمی واریان، فروش جذب اتمی کارکرده،  ای سی پی، فروش نشر اتمی، فروش دستگاه نشر اتمی، فروش هالوکاتد لامپ، فروش جی سی مس، جی سی مس فروش، ۶۸۹۰N ،۶۸۹۰Pluse ,5975xl gc-ms, 7890A GC ,7890B، جذب اتمی دست دوم، جذب اتمی ریفربیشد، کروماتوگرافی دست دوم، فروش دست دوم، icp دست دوم، فروش نشر اتمی دست دوم، فروش gc-mass دست دوم، فروش دستگاه دست دوم، فروش دست دوم، hplc، gc، gc-mass، فروش اتوسمپلر دست دوم، لامپ جذب اتمی دست دوم

 

واریان، جذب اتمی Refurbished، جذب اتمی varian 220z، جذب اتمی ۲۲۰zeeman، اتوسمپلر PSD، Varian spectraa 220Z Graphite furnace، Varian spectraa 220Z، varian atomic absorption spectrometer،

 

خرید ICP-OES | فروش ICP-OES | نمایندگی Agilent

 

product_6850-Series-II-GC-System_lg_3

فروش GC / خرید GC / قیمت HP 6850

خرید و فروش کروماتوگرافی گازی یا GC

قیمت کروماتوگرافی گازی / خرید کروماتوگرافی / فروش کروماتوگرافی/ کاربرد کروماتوگرافی / همه چیز درباره کروماتوگرافی / نماینده اجیلنت / نماینده فروش agilent /کروماتوگرافی گازی /

HP 6890A Agilent

کروماتوگرافی گازی

کروماتوگرافی گازی (به انگلیسی: Gas Chromatography) یکی از روش‌های کروماتوگرافی است که برای بررسی و جداسازی مواد فرار بدون تجزیه شدن آن‌ها، بکار می‌رود. در کروماتوگرافی گازی، فاز گازی یک فاز بی اثر ( برای مثال هلیوم، نیتروژن، آرگون و دی اکسید کربن) است و به فاز متحرک گاز حامل نیز می گویند. فاز ساکن یک جسم جامد جاذب و یا لایه نازکی از یک مایع غیر فرار است که به دیواره داخلی ستون یا به صورت پوششی روی سطح گلوله های شیشه ای یا فلزی قرار داده شده است. در صورتی که فاز ساکن جسم جامد جاذب باشد اصطلاحا کروماتوگرافی گازی گویند و اگر فاز ساکن مایع غیر فرار باشد آن را کروماتوگرافی گاز مایع گویند. اما هردو به کروماتوگرافی گازی معروف هستند. در کروماتوگرافی گازی، جداسازی اجزا یک مخلوط متناسب با میزان توزیع اجزا تشکیل دهنده مخلوط بین فاز متحرک گازی و فاز ساکن جامد یا مایع صورت میگیرد. در این روش گاز حامل مخلوط را درون ستون حرکت میدهد و بین دو فاز در حالت تعادل (گاز-مایع) اجزا تشکیل دهنده مخلوط توزیع می شوند. بنابراین فاز متحرک اجزا تشکیل دهنده نمونه را به طرف بیرون ستون حرکت میدهد و هر مولکولی که با ارتباط سست‌تر جذب ستون شده است، زودتر و جزیی که قدرت جذب بیشتری با ستون دارد، دیرتر از ستون خارج می شوند. بنابراین، اجزا مخلوط از یکدیگر جدا می شوند. کروماتوگرافی گازی برای جداسازی و شناسایی اجزا تشکیل دهنده یک مخلوط و تجزیه کمی آنها نیز کاربرد دارد.

۱اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

نواع آشکارسازهای موجود در کروماتوگرافی گازی:

  • یونش شعله­ای (FID): جهت شناسایی کمی و کیفی هیدروکربن­های سبک و سنگین (در حد ppm) و غلظت­های پائین CO و CO2
  • هدایت حرارتی (TCD): جهت شناسایی کمی و کیفی ترکیبات گازی معدنی غیرخورنده مانند O2و N2
  • الکترون گیر (ECD): این دتکتور برای آنالیز ترکیبات هالوژن­دار از حساسیت بسیار بالایی برخوردار می­باشد.
  • نیتروژن- فسفر (NPD): جهت آنالیز ترکیبات نیتروژن­دار و فسفردار

اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

این سیستم دارای قسمتهای: منبع گازی حامل، سیستم تنظیم کننده مقدار گاز، محل تزریق نمونه، ستون کروماتوگرافی، کوره و سیستم تنظیم درجه حرارت محل تزریق، آشکار ساز و سیستم شناساگر می‌باشد.

منبع گاز حامل

یک کپسول گاز با فشار زیاد به عنوان منبع گاز کامل استفاده می شود. غالبا این گاز نیتروژن با خلوص ۹۹/۹۹ درصد میباشد اما گاز های دیگری همانند هلیوم، آرگون و دی اکسید کربن نیز استفاده می شود.

ستون و کوره

اون(Oven) در دستگاه کروماتوگراف گازی

ستون در داخل کوره قرار دارد و در واقع به منزله قلب دستگاه کروماتوگرافی گازی هستند. ستون‌ها دو نوع هستند ۱- ستون‌های پر شده ۲- ستون‌های مویین.

آشکارسازها[ویرایش]

آشکارسازهای متداول در کروماتوگرافی گازی چهار نوع هستند:

  • یونش شعله‌ای
  • هدایت حرارتی
  • نورسنج شعله‌ای
  • الکترون گیر

استفاده از آشکارساز یونش شعله‌ای رایج‌تر است.

منحنی های وان دیمتر (Van deemeter curves

منحنی های وان دیمتر ارتباط میان سرعت جریان خطی گاز حامل و بازدهی و کارایی ستون را به بهترین صورت ممکن نشان می دهد. یکی از نتایج سودمندی که از منحنی های وان دیمتر قابل استخراج است سرعت جریان بهینه گاز حامل است. با چنین سرعتی کارایی سیستم کروماتوگرافی حداکثر خواهد شد زیرا در این شرایط ارتفاع هم ارز از سینی های فرضی (h) کمترین مقدار خود را دارد. همچنین از نمودارهای وان دیمتر می توان دانست که دامنه تغییرات مجاز سرعت گاز حامل چقدر است.

Retention Time Locking (RTL) maintains exact retention times from injection to injection, column to column, instrument to instrument, and lab to lab

Electronic Pneumatics Regulation (EPR) option provides the simplicity of manual operation with high precision digital display of pressure/flow and superior ease-of-use as compared to traditional manual pneumatics systems

Great fit for routine MSD applications

Single filament TCD that does not require a separate reference gas, does not require manual potentiometer adjustment, and provides a stable baseline without drift

Auto-ranging FID provides the ability to detect and quantitate from parts per billion (ppb) to parts per thousand in a single injection

Full electronic pneumatic control (EPC) from inlet to detection system

Simplified GC front panel keys and display provide sequence information, instrument conditions, and run status, and minimize operating errors

Software keyboard and display allows the user to control the system when it connects with an integrator or 3rd-party software
فروش GC | خرید GC | نماینده فروش اجیلنت
6890

فروش GC / خرید GC / قیمت HP 6890N Agilent

خرید و فروش کروماتوگرافی گازی یا GC

قیمت کروماتوگرافی گازی / خرید کروماتوگرافی / فروش کروماتوگرافی/ کاربرد کروماتوگرافی / همه چیز درباره کروماتوگرافی / نماینده اجیلنت / نماینده فروش agilent /کروماتوگرافی گازی /

HP 6890A Agilent

کروماتوگرافی گازی

کروماتوگرافی گازی (به انگلیسی: Gas Chromatography) یکی از روش‌های کروماتوگرافی است که برای بررسی و جداسازی مواد فرار بدون تجزیه شدن آن‌ها، بکار می‌رود. در کروماتوگرافی گازی، فاز گازی یک فاز بی اثر ( برای مثال هلیوم، نیتروژن، آرگون و دی اکسید کربن) است و به فاز متحرک گاز حامل نیز می گویند. فاز ساکن یک جسم جامد جاذب و یا لایه نازکی از یک مایع غیر فرار است که به دیواره داخلی ستون یا به صورت پوششی روی سطح گلوله های شیشه ای یا فلزی قرار داده شده است. در صورتی که فاز ساکن جسم جامد جاذب باشد اصطلاحا کروماتوگرافی گازی گویند و اگر فاز ساکن مایع غیر فرار باشد آن را کروماتوگرافی گاز مایع گویند. اما هردو به کروماتوگرافی گازی معروف هستند. در کروماتوگرافی گازی، جداسازی اجزا یک مخلوط متناسب با میزان توزیع اجزا تشکیل دهنده مخلوط بین فاز متحرک گازی و فاز ساکن جامد یا مایع صورت میگیرد. در این روش گاز حامل مخلوط را درون ستون حرکت میدهد و بین دو فاز در حالت تعادل (گاز-مایع) اجزا تشکیل دهنده مخلوط توزیع می شوند. بنابراین فاز متحرک اجزا تشکیل دهنده نمونه را به طرف بیرون ستون حرکت میدهد و هر مولکولی که با ارتباط سست‌تر جذب ستون شده است، زودتر و جزیی که قدرت جذب بیشتری با ستون دارد، دیرتر از ستون خارج می شوند. بنابراین، اجزا مخلوط از یکدیگر جدا می شوند. کروماتوگرافی گازی برای جداسازی و شناسایی اجزا تشکیل دهنده یک مخلوط و تجزیه کمی آنها نیز کاربرد دارد.

۱اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

نواع آشکارسازهای موجود در کروماتوگرافی گازی:

  • یونش شعله­ای (FID): جهت شناسایی کمی و کیفی هیدروکربن­های سبک و سنگین (در حد ppm) و غلظت­های پائین CO و CO2
  • هدایت حرارتی (TCD): جهت شناسایی کمی و کیفی ترکیبات گازی معدنی غیرخورنده مانند O2و N2
  • الکترون گیر (ECD): این دتکتور برای آنالیز ترکیبات هالوژن­دار از حساسیت بسیار بالایی برخوردار می­باشد.
  • نیتروژن- فسفر (NPD): جهت آنالیز ترکیبات نیتروژن­دار و فسفردار

اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

این سیستم دارای قسمتهای: منبع گازی حامل، سیستم تنظیم کننده مقدار گاز، محل تزریق نمونه، ستون کروماتوگرافی، کوره و سیستم تنظیم درجه حرارت محل تزریق، آشکار ساز و سیستم شناساگر می‌باشد.

منبع گاز حامل

یک کپسول گاز با فشار زیاد به عنوان منبع گاز کامل استفاده می شود. غالبا این گاز نیتروژن با خلوص ۹۹/۹۹ درصد میباشد اما گاز های دیگری همانند هلیوم، آرگون و دی اکسید کربن نیز استفاده می شود.

ستون و کوره

اون(Oven) در دستگاه کروماتوگراف گازی

ستون در داخل کوره قرار دارد و در واقع به منزله قلب دستگاه کروماتوگرافی گازی هستند. ستون‌ها دو نوع هستند ۱- ستون‌های پر شده ۲- ستون‌های مویین.

آشکارسازها[ویرایش]

آشکارسازهای متداول در کروماتوگرافی گازی چهار نوع هستند:

  • یونش شعله‌ای
  • هدایت حرارتی
  • نورسنج شعله‌ای
  • الکترون گیر

استفاده از آشکارساز یونش شعله‌ای رایج‌تر است.

منحنی های وان دیمتر (Van deemeter curves

منحنی های وان دیمتر ارتباط میان سرعت جریان خطی گاز حامل و بازدهی و کارایی ستون را به بهترین صورت ممکن نشان می دهد. یکی از نتایج سودمندی که از منحنی های وان دیمتر قابل استخراج است سرعت جریان بهینه گاز حامل است. با چنین سرعتی کارایی سیستم کروماتوگرافی حداکثر خواهد شد زیرا در این شرایط ارتفاع هم ارز از سینی های فرضی (h) کمترین مقدار خود را دارد. همچنین از نمودارهای وان دیمتر می توان دانست که دامنه تغییرات مجاز سرعت گاز حامل چقدر است.

Retention Time Locking (RTL) maintains exact retention times from injection to injection, column to column, instrument to instrument, and lab to lab

Electronic Pneumatics Regulation (EPR) option provides the simplicity of manual operation with high precision digital display of pressure/flow and superior ease-of-use as compared to traditional manual pneumatics systems

Great fit for routine MSD applications

Single filament TCD that does not require a separate reference gas, does not require manual potentiometer adjustment, and provides a stable baseline without drift

Auto-ranging FID provides the ability to detect and quantitate from parts per billion (ppb) to parts per thousand in a single injection

Full electronic pneumatic control (EPC) from inlet to detection system

Simplified GC front panel keys and display provide sequence information, instrument conditions, and run status, and minimize operating errors

Software keyboard and display allows the user to control the system when it connects with an integrator or 3rd-party software
فروش GC | خرید GC | نماینده اجیلنت در ایران
6890

فروش GC / خرید GC / قیمت HP 6890 Plus Agilent

خرید و فروش کروماتوگرافی گازی یا GC

قیمت کروماتوگرافی گازی / خرید کروماتوگرافی / فروش کروماتوگرافی/ کاربرد کروماتوگرافی / همه چیز درباره کروماتوگرافی / نماینده اجیلنت / نماینده فروش agilent /کروماتوگرافی گازی /

HP 6890A Agilent

کروماتوگرافی گازی

کروماتوگرافی گازی (به انگلیسی: Gas Chromatography) یکی از روش‌های کروماتوگرافی است که برای بررسی و جداسازی مواد فرار بدون تجزیه شدن آن‌ها، بکار می‌رود. در کروماتوگرافی گازی، فاز گازی یک فاز بی اثر ( برای مثال هلیوم، نیتروژن، آرگون و دی اکسید کربن) است و به فاز متحرک گاز حامل نیز می گویند. فاز ساکن یک جسم جامد جاذب و یا لایه نازکی از یک مایع غیر فرار است که به دیواره داخلی ستون یا به صورت پوششی روی سطح گلوله های شیشه ای یا فلزی قرار داده شده است. در صورتی که فاز ساکن جسم جامد جاذب باشد اصطلاحا کروماتوگرافی گازی گویند و اگر فاز ساکن مایع غیر فرار باشد آن را کروماتوگرافی گاز مایع گویند. اما هردو به کروماتوگرافی گازی معروف هستند. در کروماتوگرافی گازی، جداسازی اجزا یک مخلوط متناسب با میزان توزیع اجزا تشکیل دهنده مخلوط بین فاز متحرک گازی و فاز ساکن جامد یا مایع صورت میگیرد. در این روش گاز حامل مخلوط را درون ستون حرکت میدهد و بین دو فاز در حالت تعادل (گاز-مایع) اجزا تشکیل دهنده مخلوط توزیع می شوند. بنابراین فاز متحرک اجزا تشکیل دهنده نمونه را به طرف بیرون ستون حرکت میدهد و هر مولکولی که با ارتباط سست‌تر جذب ستون شده است، زودتر و جزیی که قدرت جذب بیشتری با ستون دارد، دیرتر از ستون خارج می شوند. بنابراین، اجزا مخلوط از یکدیگر جدا می شوند. کروماتوگرافی گازی برای جداسازی و شناسایی اجزا تشکیل دهنده یک مخلوط و تجزیه کمی آنها نیز کاربرد دارد.

 

۱اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

نواع آشکارسازهای موجود در کروماتوگرافی گازی:

  • یونش شعله­ای (FID): جهت شناسایی کمی و کیفی هیدروکربن­های سبک و سنگین (در حد ppm) و غلظت­های پائین CO و CO2
  • هدایت حرارتی (TCD): جهت شناسایی کمی و کیفی ترکیبات گازی معدنی غیرخورنده مانند O2و N2
  • الکترون گیر (ECD): این دتکتور برای آنالیز ترکیبات هالوژن­دار از حساسیت بسیار بالایی برخوردار می­باشد.
  • نیتروژن- فسفر (NPD): جهت آنالیز ترکیبات نیتروژن­دار و فسفردار

 

 

اجزا تشکیل دهنده دستگاه کروماتوگرافی گازی

این سیستم دارای قسمتهای: منبع گازی حامل، سیستم تنظیم کننده مقدار گاز، محل تزریق نمونه، ستون کروماتوگرافی، کوره و سیستم تنظیم درجه حرارت محل تزریق، آشکار ساز و سیستم شناساگر می‌باشد.

منبع گاز حامل

یک کپسول گاز با فشار زیاد به عنوان منبع گاز کامل استفاده می شود. غالبا این گاز نیتروژن با خلوص ۹۹/۹۹ درصد میباشد اما گاز های دیگری همانند هلیوم، آرگون و دی اکسید کربن نیز استفاده می شود.

ستون و کوره

اون(Oven) در دستگاه کروماتوگراف گازی

ستون در داخل کوره قرار دارد و در واقع به منزله قلب دستگاه کروماتوگرافی گازی هستند. ستون‌ها دو نوع هستند ۱- ستون‌های پر شده ۲- ستون‌های مویین.

آشکارسازها[ویرایش]

آشکارسازهای متداول در کروماتوگرافی گازی چهار نوع هستند:

  • یونش شعله‌ای
  • هدایت حرارتی
  • نورسنج شعله‌ای
  • الکترون گیر

استفاده از آشکارساز یونش شعله‌ای رایج‌تر است.

منحنی های وان دیمتر (Van deemeter curves

منحنی های وان دیمتر ارتباط میان سرعت جریان خطی گاز حامل و بازدهی و کارایی ستون را به بهترین صورت ممکن نشان می دهد. یکی از نتایج سودمندی که از منحنی های وان دیمتر قابل استخراج است سرعت جریان بهینه گاز حامل است. با چنین سرعتی کارایی سیستم کروماتوگرافی حداکثر خواهد شد زیرا در این شرایط ارتفاع هم ارز از سینی های فرضی (h) کمترین مقدار خود را دارد. همچنین از نمودارهای وان دیمتر می توان دانست که دامنه تغییرات مجاز سرعت گاز حامل چقدر است.

Retention Time Locking (RTL) maintains exact retention times from injection to injection, column to column, instrument to instrument, and lab to lab

Electronic Pneumatics Regulation (EPR) option provides the simplicity of manual operation with high precision digital display of pressure/flow and superior ease-of-use as compared to traditional manual pneumatics systems

Great fit for routine MSD applications

Single filament TCD that does not require a separate reference gas, does not require manual potentiometer adjustment, and provides a stable baseline without drift

Auto-ranging FID provides the ability to detect and quantitate from parts per billion (ppb) to parts per thousand in a single injection

Full electronic pneumatic control (EPC) from inlet to detection system

Simplified GC front panel keys and display provide sequence information, instrument conditions, and run status, and minimize operating errors

Software keyboard and display allows the user to control the system when it connects with an integrator or 3rd-party software
فروش کروماتوگرافی گازی | خرید کروماتوگرافی گازی | نماینده فروش کروماتوگرافی گازی
آدرس : تهران، خیابان خرمشهر، خیابان عربعلی، کوچه سوم، میدان سوم پلاک ۵ طبقه اول
تلفن دفتر فروش : 0098(21)88397511-88401700
تلفن دفتر مركزي : 0098(21)88762949-88763604-88762691-88766179
موبایل : ۰۹۹۱۳۰۲۰۶۷۴، ۰۹۹۱۳۰۲۰۶۸۴ ، ۰۹۹۱۳۰۲۰۶۹۴
فکس : 0098(21) 86125438
واتساپ : ۰۹۹۱۳۰۲۰۶۸۴ ، ۰۹۹۱۳۰۲۰۶۹۴
پست الکترونیک : samadi@aratajhiz.com
پست الکترونیک : Hatef.samadi@gmail.com
اینستاگرام شرکت آراتجهیز : https://www.instagram.com/aratajhiz
مشاهده ویدئوها در آپارات : https://www.aparat.com/Aratajhiz
تلگرام : http://telegram.me/aratajhizpharmed

بایگانی شمسی